Hitachi 16-Bit Single-Chip Microcomputer

H8S/2339, H8S/2338 Series, H8S/2339 F-ZTATTM, H8S/2338 F-ZTATTM

H8S/2339 F-ZTAT TM	HD64F2339
H8S/2338 F-ZTAT TM	HD64F2338
H8S/2338	HD6432338,
H8S/2337	HD6432337
H8S/2332	HD6412332

Reference Manual

- Individual Product Specifications -

HITACHI

ADE-602-162A Rev. 2.0 5/16/00 Hitachi, Ltd.

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's
 patent, copyright, trademark, or other intellectual property rights for information contained in
 this document. Hitachi bears no responsibility for problems that may arise with third party's
 rights, including intellectual property rights, in connection with use of the information
 contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you
 have received the latest product standards or specifications before final design, purchase or
 use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Revisions and Additions in this Edition

Page	Item	Revisions (See Manual for Details)
All		H8S/2339 (F-ZTAT version) product added
2	Table 1.1 Overview	Item "CPU"
		Maximum clock rate: 25 MHz
6	Figure 1.1 Internal Block Diagram	Port 5 I/O pins amended
6	1.2 Block Diagram	H8S/2339F-ZTAT version EMLE pin added
7	1.3 Pin Arrangement	 (FP-144G pin 97)
11	1.4 Pin Functions in Each Operating Mode	-
15, 16	1.5 Pin Functions	MD2-MD0 function description amended
16	_	EMLE added
31	2.3 Operating Mode Descriptions	Modes 8 and 9 description amended
32		Modes 12 and 13 description amended
34	Figure 2.1 H8S/2339 Memory Map in Each Operating Mode	H8S/2339 address map added
56	Table 3.10 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs	Interrupt sources DMTEND0A, 0B, 1A, 1B added
73	4.2.5 Bus Control Register L (BCRL)	Bit 5: H8S/2339 address Note 2 added
98	Figure 4.15 CBR Refresh Timing	Note added
98	Figure 4.16 CBR Refresh Timing	Note added
100	Figure 4.18 DACK Output Timing when DDS = 1	Note added
101	Figure 4.19 \overrightarrow{DACK} Output Timing when DDS = 0	Note added
109	Table 4.7 Pin States in Idle Cycle	CSn, DACKm Note added
110	Figure 4.26 Example of Timing when Write Data Buffer Function is Used	Note added
112	Table 4.8 Pin States in Bus-Released State	CSn, DACKm Note added
117	5.1 Overview	Ports 1 and F descriptions amended (driving one TTL load and 50 pF capacitive load)
149	Figure 5.4 Port 4 Pin Functions	$P4_7$ and $P4_6$ I/O amended

Page	Item	Revisions (See Manual for Details)
231	Table 5.34I/O Port States in Each ProcessingState	[Notation] amendments, additions
298	Figure 6.11 Block Diagram of D/A Converter	Amended
300	6.12 RAM (H8S/2339)	Added
302, 303	6.14 ROM (H8S/2339)	Added
308	Table 7.2 DC Characteristics	$V_{\rm IH}$ min value amended
		$V_{\text{\tiny OL}}$ max value amended
		I _{in} max value amended
309	-	-I _P min and max values amended
		I_{cc} typ and max values amended
		Analog/reference power supply current
		AI_{cc} typ and max values amended
		Note 4 amended
314	Figure 7.5 Interrupt Input Timing	$\overline{\text{IRQi}} \rightarrow \overline{\text{IRQ}}$
320	Figure 7.9 DRAM Bus Timing	$\overline{\text{HWR}}, \overline{\text{LWR}} \rightarrow \overline{\text{HWR}} (\overline{\text{WE}})$
322	Figure 7.12 Burst ROM Access Timing	$\overline{\text{CS7}} - \overline{\text{CS0}} \to \overline{\text{CS0}}$
323	Figure 7.13 Burst ROM Access Timing	$\overline{\text{CS7-CS0}} \to \overline{\text{CS0}}$
334	Table 7.9 A/D Conversion Characteristics	Conversion time and absolute accuracy values (nonlinearity error, offset error, full-scale error) amended
336	Table 7.11 Absolute Maximum Ratings	V_{cc} and AV_{cc} rated values amended
		Note amended
337	Table 7.12 DC Characteristics	Test conditions (V_{CC} , AV_{CC} , V_{ref}) amended
338		V_{IH} min value amended
		I _{in} max value amended
		-I _P test conditions amended
		\mathbf{I}_{cc} typ and max values amended
		Analog/reference power supply current
		AI_{cc} typ and max values amended
		Notes 2, 3, and 4 amended
339	Table 7.13 Permissible Output Currents	Test conditions (V_{cc} , AV_{cc} , V_{ret}) amended
347	Table 7.19 A/D Conversion Characteristics	Conversion time and absolute accuracy values (nonlinearity error, offset error, full-scale error) amended

Page	Item	Revisions (See Manual for Details)
348	Table 7.20 D/A Conversion Characteristics	Test conditions B (V_{ref}) amended
349	Table 7.21 Flash Memory Characteristics	All items amended
351	8.1 List of Registers (Address Order)	HF800-H'FBFF DAR, CRA, CRB amended
353	_	H'FED5 BCRL bit 5 added
		H'FEDB RAMER Note added
360	_	H'FFCB EBR2 bits 5 and 4 added
363 to 365	8.2 List of Registers (By Module)	Common to DMAC, TPU0-TPU5, and TPU added
368		Power-down mode added
369	_	Port 4 added
404	8.3 Functions	BCRL bit 5 H8S/2339 description added
		DRAMCR bit 6 description amended
		$TRr \to Tr, TRC1 \to Tc1$
426	_	DTVECR R/W Note amendment, addition
493	—	FLMCR1 bit 7 H8S/2339 Note added
495	_	EBR2 bits 5 and 4 added

Organization of H8S/2339, H8S/2338 Series Reference Manual

The following manuals are available for H8S/2339 and H8S/2338 Series products.

Table 1H8S/2339, H8S/2338 Series Manuals

Title	Document Code
H8S/2600 Series, H8S/2000 Series Programming Manual	ADE-602-083A
H8S/2339, H8S/2338 Series, H8S/2329, H8S/2328 Series, H8S/2318 Series Hardware Manual	ADE-602-171A (in preparation)
H8S/2339, H8S/2338 Series, H8S/2339 F-ZTAT™, H8S/2338 F-ZTAT™ Reference Manual	ADE-602-162A

The H8S/2600 Series, H8S/2000 Series Programming Manual gives a detailed description of the architecture and instruction set of the H8S/2000 CPU.

The H8S/2339, H8S/2338 Series, H8S/2329, H8S/2328 Series, H8S/2318 Series Hardware Manual describes the operation of on-chip functions, and gives a detailed description of the related registers.

The H8S/2339, H8S/2338 Series, H8S/2339 F-ZTATTM, H8S/2338 F-ZTATTM Reference Manual mainly covers information, including pin arrangement, I/O ports, MCU operating modes (address maps), interrupt vectors, bus control, and electrical characteristics, and also includes a brief description of all I/O registers for the convenience of the user.

The contents of the H8S/2339, H8S/2338 Series, H8S/2329, H8S/2328 Series, H8S/2318 Series Hardware Manual and the H8S/2339, H8S/2338 Series, H8S/2339 F-ZTATTM, H8S/2338 F-ZTATTM Reference Manual are summarized in table 2.

No.	ltem	Hardware Manual	Reference Manual
1	Overview	0	 (including pin arrangement)
2	MCU operating modes (including address maps)	_	O
3	Exception handling	0	0
4	Interrupt controller	O	0
5	Bus controller	O	O
6	DMA controller (DMAC)	O	_
7	Data transfer controller (DTC)	O	_
8	16-bit timer pulse unit (TPU)	O	_
9	Programmable pulse generator (PPG)	O	_
10	8-bit timers	O	_
11	Watchdog timer	O	_
12	Serial communication interface (SCI)	O	_
13	Smart card interface	O	_
14	A/D converter	O	_
15	D/A converter	O	_
16	RAM	O	_
17	ROM (flash memory)	O	_
18	Clock pulse generator	O	_
19	Power-down modes	0	_
20	I/O ports (including port block diagrams)	_	O
21	Electrical characteristics	_	0
22	Register reference chart (in address order, with function summary)	_	0
23	Instruction set	0	_
24	Package dimension diagrams	_	0

Table 2 Contents of Hardware Manual and Reference Manual

○: Included

©: Included (with detailed register descriptions)

-: Not included

The following chart shows where to find various kinds of information for different purposes.

For product evaluation	For product specifications		
information, or comparative	Overview	_ _	1.1 Overview
specification	Pin arrangement diagram	_ _	1.3 Pin Arrangement
for current users of Hitachi	Block diagrams of function modules	_F\$	Section 6 Peripheral Block Diagrams
products	Pin functions	_ _	1.5 Pin Functions
	Electrical characteristics	_ I \$	Section 7 Electrical Characteristics
For detailed information	For details of operation of modules		
on functions	I/O port information	_ I \$\$	Section 5 I/O Ports
	Interrupts and exception handling	_ _	Section 3 Exception Handling and Interrupt Controller
	Information on other modules	1	H8S/2339, H8S/2338 Series, H8S/2329, H8S/2328 Series, H8S/2318 Series Hardware Manual
	For information on operating modes		
	Pin functions	_ 	1.5 Pin Functions
	List	_ _	1.4 Pin Functions in Each Operating Mode
	Detailed descriptions	_	
	For information on registers		
For use as design material	List	_ _	Section 8 registers
	To find a register from its address	_ _	8.1 List of Registers (Address Order)
	To find register information by function	_ _	8.2 List of Registers (By Module)
	Setting procedure and notes	_	H8S/2339, H8S/2338 Series, H8S/2329, H8S/2328 Series, H8S/2318 Series Hardware Manual
	For information on instructions		
	List	1	
	Operation description and notes	_[-]	H8S/2600 Series, H8S/2000 Series Programming Manual
	Program examples	_[```	

Contents

Secti	on 1	Overview	1	
1.1	Overvi	ew	1	
1.2	Block Diagram			
1.3	Pin Arrangement			
1.4	Pin Functions in Each Operating Mode			
1.5	Pin Fu	actions	14	
1.6	Produc	t Lineup	22	
1.7	Packag	e Dimensions	23	
Secti	on 2	MCU Operating Modes	25	
2.1		ew	25	
	2.1.1	Operating Mode Selection (H8S/2338 F-ZTAT Version)	25	
	2.1.2	Operating Mode Selection (H8S/2339 F-ZTAT Version, Mask ROM,		
		and ROMless Versions)	26	
	2.1.3	Register Configuration	27	
2.2		er Descriptions	28	
	2.2.1	Mode Control Register (MDCR)	28	
	2.2.2	System Control Register (SYSCR)	28	
	2.2.3	System Control Register 2 (SYSCR2) (F-ZTAT Version Only)	30	
2.3	Operati	ing Mode Descriptions	30	
	2.3.1	Modes 1 to 3	30	
	2.3.2	Mode 4 (Expanded Mode with On-Chip ROM Disabled)	30	
	2.3.3	Mode 5 (Expanded Mode with On-Chip ROM Disabled)	31	
	2.3.4	Mode 6 (Expanded Mode with On-Chip ROM Enabled)	31	
	2.3.5	Mode 7 (Single-Chip Mode)	31	
	2.3.6	Modes 8 and 9	31	
	2.3.7	Mode 10 (H8S/2338 F-ZTAT Version Only)	31	
	2.3.8	Mode 11 (H8S/2338 F-ZTAT Version Only)	31	
	2.3.9	Modes 12 and 13	32	
	2.3.10	Mode 14 (H8S/2338 F-ZTAT Version Only)	32	
	2.3.11	Mode 15 (H8S/2338 F-ZTAT Version Only)	32	
2.4	Pin Fu	actions in Each Operating Mode	33	
2.5		y Map in Each Operating Mode	33	
Secti	on 3	Exception Handling and Interrupt Controller	41	
3.1		ew	41	
5.1	3.1.1	Exception Handling Types and Priority	41	
3.2		pt Controller	41	
5.2	3.2.1	Interrupt Controller Features	42	
	5.4.1	montupe Controller i eatures	74	

	3.2.2	Pin Configuration	42
3.3	Interru	pt Sources	43
	3.3.1	External Interrupts	43
	3.3.2	Internal Interrupts	44
	3.3.3	Interrupt Exception Vector Table	44
3.4	Interru	pt Control Modes and Interrupt Operation	50
3.5	Interru	pt Response Times	52
3.6	DTC a	and DMAC Activation by Interrupt	53
	3.6.1	Overview	53
	3.6.2	Block Diagram	54
	3.6.3	Operation	54
Sect	tion 4	Bus Controller	59
4.1		iew	59
т. 1	4.1.1	Features	59
	4.1.2	Block Diagram.	61
	4.1.3	Pin Configuration	62
	4.1.3	Register Configuration	63
4.2		er Descriptions	64
4.2	4.2.1	Bus Width Control Register (ABWCR)	64
	4.2.1		65
	4.2.2	Access State Control Register (ASTCR) Wait Control Registers H and L (WCRH, WCRL)	65
	4.2.3		
		Bus Control Register H (BCRH)	70 72
	4.2.5 4.2.6	Bus Control Register L (BCRL)	72
		Memory Control Register (MCR)	74
	4.2.7	DRAM Control Register (DRAMCR)	76
	4.2.8	Refresh Timer Counter (RTCNT)	78
	4.2.9	Refresh Time Control Register (RTCOR)	78
4.3		iew of Bus Control	79
	4.3.1	Area Partitioning	79
	4.3.2	Bus Specifications	80
	4.3.3	Memory Interfaces	81
	4.3.4	Advanced Mode	82
	4.3.5	Chip Select Signals	83
4.4		Bus Interface	
	4.4.1	Overview	84
	4.4.2	Wait Control	84
4.5	DRAM	/I Interface	86
	4.5.1	Overview	86
	4.5.2	Setting DRAM Space	86
	4.5.3	Address Multiplexing	86
	4.5.4	Data Bus	87
	4.5.5	Pins Used for DRAM Interface	88

	4.5.6	Basic Timing	89
	4.5.7	Precharge State Control	90
	4.5.8	Wait Control	91
	4.5.9	Byte Access Control	92
	4.5.10	Burst Operation	94
	4.5.11	Refresh Control	96
4.6	DMAC	Single Address Mode and DRAM Interface	100
	4.6.1	When DDS = 1	100
	4.6.2	When DDS = 0	101
4.7	Burst R	OM Interface	102
	4.7.1	Overview	102
	4.7.2	Basic Timing	102
	4.7.3	Wait Control	104
4.8	Idle Cy	cle	105
	4.8.1	Operation	105
	4.8.2	Pin States in Idle Cycle	
4.9	Write I	Data Buffer Function	
4.10	Bus Re	lease	111
	4.10.1	Overview	111
		Operation	
		Pin States in External-Bus-Released State	
		Transition Timing	
		Usage Note	
4.11		bitration	
	4.11.1	Overview	114
		Operation	
		Bus Transfer Timing	
		Note on Use of External Bus Release	
4.12		ntroller Operation in a Reset	
		-1	
Secti	on 5	I/O Ports	117
5.1		ew	
5.2			
	5.2.1	Overview	
	5.2.2	Register Configuration	
	5.2.3	Pin Functions	125
5.3			133
	5.3.1	Overview	133
	5.3.2	Register Configuration	134
	5.3.3		136
5.4			
	5.4.1	Overview	144
	5.4.2	Register Configuration	144

	5.4.3	Pin Functions	147
5.5	Port 4		149
	5.5.1	Overview	149
	5.5.2	Register Configuration	149
	5.5.3	Pin Functions	150
5.6	Port 5		150
	5.6.1	Overview	150
	5.6.2	Register Configuration	152
	5.6.3	Pin Functions	156
5.7	Port 6		158
	5.7.1	Overview	158
	5.7.2	Register Configuration	159
	5.7.3	Pin Functions	162
5.8	Port 7		164
	5.8.1	Overview	164
	5.8.2	Register Configuration	165
	5.8.3	Pin Functions	167
5.9	Port 8		169
	5.9.1	Overview	169
	5.9.2	Register Configuration	170
	5.9.3	Pin Functions	173
5.10	Port 9		175
	5.10.1	Overview	175
	5.10.2	Register Configuration	176
	5.10.3	Pin Functions	179
5.11	Port A.		181
	5.11.1	Overview	181
	5.11.2	Register Configuration	182
	5.11.3	Pin Functions	186
	5.11.4	MOS Input Pull-Up Function	188
5.12	Port B.		189
	5.12.1	Overview	189
	5.12.2	Register Configuration	190
	5.12.3	Pin Functions	192
	5.12.4	MOS Input Pull-Up Function	194
5.13	Port C.		195
	5.13.1	Overview	195
	5.13.2	Register Configuration	196
		Pin Functions	
		MOS Input Pull-Up Function	
5.14			201
	5.14.1	Overview	201
	5.14.2	Register Configuration	202

	5.14.3	Pin Functions	204
	5.14.4	MOS Input Pull-Up Function	205
5.15	Port E.		206
	5.15.1	Overview	206
	5.15.2	Register Configuration	207
	5.15.3	Pin Functions	209
	5.15.4	MOS Input Pull-Up Function	210
5.16			
	5.16.1	Overview	212
	5.16.2	Register Configuration	213
	5.16.3	Pin Functions	217
5.17	Port G.		219
	5.17.1	Overview	219
	5.17.2	Register Configuration	220
		Pin Functions	
5.18	Pin Sta	tes	225
	5.18.1	Port States in Each Mode	225
5.19		t Block Diagrams	
		Port 1	
	5.19.2	Port 2	235
	5.19.3	Port 3	236
	5.19.4	Port 4	239
	5.19.5	Port 5	240
	5.19.6	Port 6	245
	5.19.7	Port 7	249
	5.19.8	Port 8	252
	5.19.9	Port 9	256
	5.19.10	Port A	258
	5.19.11	Port B	261
		Port C	
		Port D	
	5.19.14	Port E	264
	5.19.15	Port F	265
	5.19.16	Port G	273
Secti	on 6	Supporting Module Block Diagrams	277
6.1	Interru	pt Controller	277
	6.1.1	Features	277
	6.1.2	Block Diagram	277
	6.1.3	Pins	278
6.2	DMA (Controller	278
	6.2.1	Features	278
	6.2.2	Block Diagram	279

	6.2.3	Pins	280
6.3	Data Tı	ransfer Controller	280
	6.3.1	Features	280
	6.3.2	Block Diagram	281
6.4	16-Bit '	Timer Pulse Unit	282
	6.4.1	Features	282
	6.4.2	Block Diagram	283
	6.4.3	Pins	284
6.5	Program	nmable Pulse Generator	285
	6.5.1	Features	285
	6.5.2	Block Diagram.	286
	6.5.3	Pins	287
6.6	8-Bit T	imer	287
	6.6.1	Features	287
	6.6.2	Block Diagram.	
	6.6.3	Pins	
6.7	Watch	log Timer	
	6.7.1	Features	
	6.7.2	Block Diagram	
	6.7.3	Pins	
6.8	Serial C	Communication Interface	
	6.8.1	Features	
	6.8.2	Block Diagram	
	6.8.3	Pins	
6.9		Card Interface	
	6.9.1	Features	
	6.9.2	Block Diagram.	
		ins	
6.10		onverter	
0.10		Features	
		Block Diagram.	
		Pins	
6.11		onverter	
0.11		Features	
		Block Diagram.	298
		Pins	
6.12		H8S/2339)	
0.12		Features	
		Block Diagram.	
6.13		H8S/2338, H8S/2337, H8S/2332)	301
5.15		Features	
		Block Diagram	
6.14		H8S/2339)	
0.14	NOM (1109/2357	502

	6.14.1 Features	302
	6.14.2 Block Diagrams	302
6.15	ROM (H8S/2338, H8S2337)	304
	6.15.1 Features	304
	6.15.2 Block Diagrams	304
6.16	Clock Pulse Generator	306
	6.16.1 Features	306
	6.16.2 Block Diagram	306
Secti	on 7 Electrical Characteristics	307
7.1	Electrical Characteristics of Mask ROM Version (H8S/2338, H8S/2337)	
	and ROMless Version (H8S/2332)	307
	7.1.1 Absolute Maximum Ratings	307
	7.1.2 DC Characteristics	308
	7.1.3 AC Characteristics	310
	7.1.4 A/D Conversion Characteristics	334
	7.1.5 D/A Conversion Characteristics	335
7.2	Electrical Characteristics of F-ZTAT Version (H8S/2338)	336
	7.2.1 Absolute Maximum Ratings	336
	7.2.2 DC Characteristics	337
	7.2.3 AC Characteristics	340
	7.2.4 A/D Conversion Characteristics	347
	7.2.5 D/A Conversion Characteristics	348
	7.2.6 Flash Memory Characteristics	349
7.3	Usage Note	350
Secti	on 8 Registers	351
8.1	List of Registers (Address Order)	
8.2	List of Registers (By Module)	
8.3	Functions	372

Section 1 Overview

1.1 Overview

The H8S/2339 and H8S/2338 Series are series of microcomputers (MCUs: microcomputer units), built around the H8S/2000 CPU, employing Hitachi's proprietary architecture, and equipped with peripheral functions on-chip.

The H8S/2000 CPU has an internal 32-bit architecture, is provided with sixteen 16-bit general registers and a concise, optimized instruction set designed for high-speed operation, and can address a 16-Mbyte linear address space. The instruction set is upward-compatible with H8/300 and H8/300H CPU instructions at the object-code level, facilitating migration from the H8/300, H8/300L, or H8/300H Series.

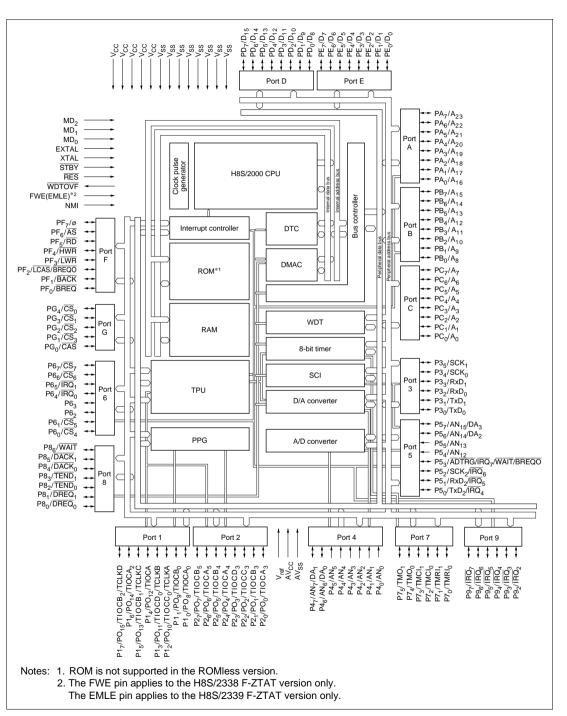
On-chip peripheral functions required for system configuration include DMA controller (DMAC) and data transfer controller (DTC) bus masters, ROM and RAM memory, a 16-bit timer pulse unit (TPU), programmable pulse generator (PPG), 8-bit timer, watchdog timer (WDT), serial communication interface (SCI), A/D converter, D/A converter, and I/O ports.

A high-functionality bus controller is also provided, enabling fast and easy connection of DRAM and other kinds of memory.

Single-power-supply flash memory (F-ZTAT^{TM*}) and mask ROM versions are available, providing a quick and flexible response to conditions from ramp-up through full-scale volume production, even for applications with frequently changing specifications. ROM is connected to the CPU via a 16-bit data bus, enabling both byte and word data to be accessed in one state. Instruction fetching is thus speeded up, and processing speed increased.

The features of the H8S/2339 and H8S/2338 Series are shown in table 1.1.

Note: * F-ZTAT is a trademark of Hitachi, Ltd.


Table 1.1 Overview

ltem	Specification
CPU	General-register machine
	 — Sixteen 16-bit general registers (also usable as sixteen 8-bit registers or eight 32-bit registers)
	High-speed operation suitable for realtime control
	 Maximum clock rate: 25 MHz
	 High-speed arithmetic operations
	8/16/32-bit register-register add/subtract: 40 ns (at 25 MHz operation)
	16 $ imes$ 16-bit register-register multiply: 800 ns (at 25 MHz operation)
	32 ÷ 16-bit register-register divide: 800 ns (at 25 MHz operation)
	 Instruction set suitable for high-speed operation
	 — Sixty-five basic instructions
	 — 8/16/32-bit data transfer, arithmetic, and logic instructions
	 Unsigned/signed multiply and divide instructions
	 Powerful bit-manipulation instructions
	CPU operating mode
	 Advanced mode: 16-Mbyte address space
Bus controller	 Address space divided into 8 areas, with bus specifications settable independently for each area
	Chip select output possible for each area
	Choice of 8-bit or 16-bit access space for each area
	2-state or 3-state access space can be designated for each area
	 Number of program wait states can be set for each area
	 Maximum 8-Mbyte DRAM directly connectable (or use of interval timer possible)
	External bus release function
DMA controller	Choice of short address mode or full address mode
(DMAC)	4 channels in short address mode
	2 channels in full address mode
	Transfer possible in repeat mode, block transfer mode, etc.
	Single address mode transfer possible
	Can be activated by internal interrupt
Data transfer	Can be activated by internal interrupt or software
controller (DTC)	Multiple transfers or multiple types of transfer possible for one activation source
	Transfer possible in repeat mode, block transfer mode, etc.
	 Request can be sent to CPU for interrupt that activated DTC

Item	Specification					
16-bit timer pulse	6-channel 16-bit timer on-chip					
unit (TPU)	Pulse I/O processing	 Pulse I/O processing capability for up to 16 pins 				
	Automatic 2-phase en	coder count capability				
Programmable	Maximum 16-bit pulse	output possible with TPU	J as time base			
pulse generator	Output trigger selectal	ole in 4-bit groups				
(PPG)	Non-overlap margin ca	an be set				
	Direct output or invers	e output setting possible				
8-bit timer,	8-bit up-counter (exter	nal event count capabilit	y)			
2 channels	 Two time constant reg 	isters				
	 Two-channel connecti 	on possible				
Watchdog timer	Watchdog timer or integration	erval timer selectable				
Serial	-	r synchronous mode sel	ectable			
communication	 Multiprocessor communication 					
interface (SCI), 3 channels	Smart card interface f	unction				
A/D converter	Resolution: 10 bits					
	 Input: 12 channels 					
	 6.7 µs minimum conve 	ersion time (at 20 MHz op	peration)			
	 Single or scan mode s 					
	 Sample-and-hold function 					
		e activated by external tri	gger or timer trigger			
D/A converter	Resolution: 8 bits					
	Output: 4 channels					
I/O ports	• 106 input/output pins,	12 input-only pins				
Memory	 Flash memory and ma 	isk ROM				
	 High-speed static RAM 	Λ				
	Product Name	ROM	RAM			
	H8S/2339*	384 kbytes	32 kbytes			
	H8S/2338	256 kbytes	8 kbytes			
	H8S/2337	128 kbytes	8 kbytes			
	H8S/2332	—	8 kbytes			
	Note: * Under developme	nt				
Interrupt controller	 Nine external interrupt 52 internal interrupt so 	pins (NMI, \overline{IRQ}_0 to \overline{IRQ}_7)			
	Eight priority levels se	ttable				

Item	Specification							
Power-down state	 Medium-speed mode Sleep mode Module stop mode Software standby mode Hardware standby mode Variable clock division ratio Eight MCU operating modes (H8S/2338 F-ZTAT version) 							
		CPU			Extern	al Data Bus		
	Mode	Operating	Description	On-Chip ROM	Initial Value	Maximum Value		
	0	_	_	_	_	_		
	1	_						
	2	_						
	3							
	4	Advanced	Expanded mode with on-chip ROM disabled	Disabled Enabled	16 bits	16 bits		
	5				8 bits	16 bits		
	6		Expanded mode with on-chip ROM enabled		8 bits	16 bits		
	7	-	Single-chip mode		_	_		
	8	_	_	—	_	_		
	9	_						
	10	Advanced	Boot mode	Enabled	8 bits	16 bits		
	11	_			_	_		
	12	_	_	_	_	_		
	13	_						
	14	Advanced	User program mode	Enabled	8 bits	16 bits		
	15	_			_	_		

ltem	Specifi	ication					
Operating modes		ir MCU operat Mless version	ing modes (H8S/2339 F-ZT/ s)	AT version, I	Mask ROM	1, and	
		CPU			Extern	al Data Bus	
	Mode	Operating Mode	Description	On-Chip ROM	Initial Value	Maximum Value	
	1	—	—	—	—	_	
	2						
	3						
	4*	Advanced	Expanded mode with on- chip ROM disabled	Disabled	16 bits	16 bits	
	5*	_	Expanded mode with on- chip ROM disabled	Disabled	8 bits	16 bits	
	6	_	Expanded mode with on- chip ROM enabled	Enabled	8 bits	16 bits	
	7		Single-chip mode	Enabled	_	_	
Note: * Only modes 4 and 5 are provided in the ROMless version.							
Clock pulse generator	Built-in duty correction circuit						
Package	• 144	-pin plastic Q	FP (FP-144)				

Figure 1.1 Internal Block Diagram

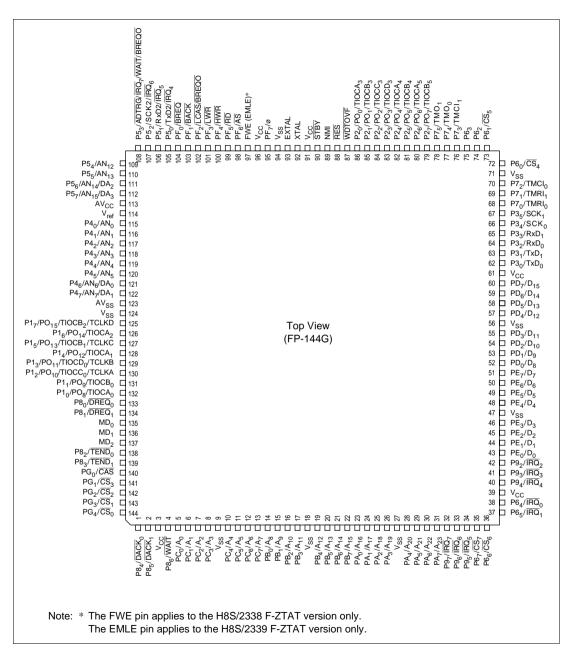


Figure 1.2 shows the pin arrangement of the H8S/2339 and H8S/2338 Series.

Figure 1.2 Pin Arrangement (TFP-144G: Top View)

1.4 Pin Functions in Each Operating Mode

Table 1.2 Pin Functions in Each Operating Mode

Pin No.	Pin Name						
FP-144	Mode 4*	Mode 5*	Mode 6	Mode 7	Flash Memory Programmer Mode		
1	P8 ₄ /DACK ₀	P8 ₄ /DACK ₀	P8 ₄ /DACK ₀	P8₄/DACK₀	NC		
2	P8₅/DACK ₁	P8₅/DACK ₁	P8₅/DACK ₁	P8₅/DACK ₁	NC		
3	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}		
4	P8 ₆ /WAIT	P8 ₆ /WAIT	P8 ₆ /WAIT	P8 ₆	NC		
5	A ₀	A ₀	PC ₀ /A ₀	PC ₀	A ₀		
6	A ₁	A ₁	PC ₁ /A ₁	PC ₁	A ₁		
7	A ₂	A ₂	PC ₂ /A ₂	PC ₂	A ₂		
8	A ₃	A ₃	PC ₃ /A ₃	PC ₃	A ₃		
9	V _{ss}	V _{ss}	V _{ss}	V _{ss}	V _{ss}		
10	A ₄	A ₄	PC ₄ /A ₄	PC ₄	A ₄		
11	A ₅	A ₅	PC ₅ /A ₅	PC₅	A ₅		
12	A ₆	A ₆	PC ₆ /A ₆	PC ₆	A ₆		
13	A ₇	A ₇	PC ₇ /A ₇	PC ₇	A ₇		
14	A ₈	A ₈	PB ₀ /A ₈	PB ₀	A ₈		
15	A ₉	A ₉	PB ₁ /A ₉	PB ₁	A ₉		
16	A ₁₀	A ₁₀	PB ₂ /A ₁₀	PB ₂	A ₁₀		
17	A ₁₁	A ₁₁	PB ₃ /A ₁₁	PB ₃	A ₁₁		
18	V _{ss}	V _{ss}	V _{ss}	V _{ss}	V _{ss}		
19	A ₁₂	A ₁₂	PB ₄ /A ₁₂	PB_4	A ₁₂		
20	A ₁₃	A ₁₃	PB ₅ /A ₁₃	PB ₅	A ₁₃		
21	A ₁₄	A ₁₄	PB ₆ /A ₁₄	PB ₆	A ₁₄		
22	A ₁₅	A ₁₅	PB ₇ /A ₁₅	PB ₇	A ₁₅		
23	A ₁₆	A ₁₆	PA ₀ /A ₁₆	PA _o	A ₁₆		
24	A ₁₇	A ₁₇	PA ₁ /A ₁₇	PA ₁	A ₁₇		
25	A ₁₈	A ₁₈	PA ₂ /A ₁₈	PA ₂	A ₁₈		
26	A ₁₉	A ₁₉	PA ₃ /A ₁₉	PA ₃	NC		
27	V _{ss}	V _{ss}	V _{ss}	V _{ss}	V _{ss}		

Note: * Only modes 4 and 5 are provided in the ROMless version.

Pin No.

Pin Name

FP-144	Mode 4*	Mode 5*	Mode 6	Mode 7	Flash Memory Programmer Mode
28	A ₂₀	A ₂₀	PA_4/A_{20}	PA_4	NC
29	PA ₅ /A ₂₁	PA ₅ /A ₂₁	PA ₅ /A ₂₁	PA ₅	NC
30	PA ₆ /A ₂₂	PA ₆ /A ₂₂	PA ₆ /A ₂₂	PA ₆	NC
31	PA ₇ /A ₂₃	PA ₇ /A ₂₃	PA ₇ /A ₂₃	PA ₇	NC
32	P9 ₇ /IRQ ₇	NC			
33	P9 ₆ /IRQ ₆	$P9_6/\overline{IRQ}_6$	$P9_6/\overline{IRQ}_6$	$P9_6/\overline{IRQ}_6$	NC
34	$P9_{5}/\overline{IRQ}_{5}$	$P9_5/\overline{IRQ}_5$	$P9_5/\overline{IRQ}_5$	$P9_5/\overline{IRQ}_5$	NC
35	$P6_7/\overline{CS}_7$	P6 ₇ / CS 7	P6 ₇ / CS 7	P6 ₇	NC
36	$P6_6/\overline{CS}_6$	$P6_6/\overline{CS}_6$	$P6_6/\overline{CS}_6$	P6 ₆	V _{cc}
37	$P6_{5}/\overline{IRQ}_{1}$	$P6_{5}/\overline{IRQ}_{1}$	$P6_{5}/\overline{IRQ}_{1}$	$P6_{5}/\overline{IRQ}_{1}$	V _{ss}
38	P6₄/IRQ₀	$P6_4/\overline{IRQ}_0$	$P6_4/\overline{IRQ}_0$	$P6_4/\overline{IRQ}_0$	V _{ss}
39	V _{cc}				
40	$P9_4/\overline{IRQ}_4$	$P9_4/\overline{IRQ}_4$	$P9_4/\overline{IRQ}_4$	$P9_4/\overline{IRQ}_4$	NC
41	P9 ₃ /IRQ ₃	$P9_3/\overline{IRQ}_3$	P9 ₃ /IRQ ₃	$P9_3/\overline{IRQ}_3$	NC
42	$P9_2/\overline{IRQ}_2$	$P9_2/\overline{IRQ}_2$	$P9_2/\overline{IRQ}_2$	$P9_2/\overline{IRQ}_2$	NC
43	PE ₀ /D ₀	PE ₀ /D ₀	PE ₀ /D ₀	PE _o	NC
44	PE ₁ /D ₁	PE ₁ /D ₁	PE ₁ /D ₁	PE1	NC
45	PE_2/D_2	PE_2/D_2	PE_2/D_2	PE ₂	NC
46	PE ₃ /D ₃	PE ₃ /D ₃	PE ₃ /D ₃	PE ₃	NC
47	V _{ss}				
48	PE_4/D_4	PE ₄ /D ₄	PE_4/D_4	PE4	NC
49	PE_5/D_5	PE ₅ /D ₅	PE ₅ /D ₅	PE₅	NC
50	PE_6/D_6	PE ₆ /D ₆	PE ₆ /D ₆	PE ₆	NC
51	PE ₇ /D ₇	PE ₇ /D ₇	PE ₇ /D ₇	PE ₇	NC
52	D ₈	D ₈	D ₈	PD ₀	I/O _o
53	D ₉	D ₉	D ₉	PD ₁	I/O ₁
54	D ₁₀	D ₁₀	D ₁₀	PD ₂	I/O ₂
55	D ₁₁	D ₁₁	D ₁₁	PD ₃	I/O ₃
56	V _{ss}				

Note: * Only modes 4 and 5 are provided in the ROMless version.

Pin No.

Pin Name

FP-144	Mode 4*	Mode 5*	Mode 6	Mode 7	Flash Memory Programmer Mode
57	D ₁₂	D ₁₂	D ₁₂	PD ₄	I/O ₄
58	D ₁₃	D ₁₃	D ₁₃	PD ₅	I/O ₅
59	D ₁₄	D ₁₄	D ₁₄	PD ₆	I/O ₆
60	D ₁₅	D ₁₅	D ₁₅	PD ₇	I/O ₇
61	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}
62	P3 ₀ /TxD ₀	NC			
63	P3 ₁ /TxD ₁	NC			
64	P3 ₂ /RxD ₀	V _{cc}			
65	P3 ₃ /RxD ₁	NC			
66	P3 ₄ /SCK ₀	NC			
67	P3 ₅ /SCK ₁	NC			
68	P7 ₀ /TMRI ₀	NC			
69	P7 ₁ /TMRI ₁	NC			
70	P7 ₂ /TMCI ₀	NC			
71	V _{ss}	V _{ss}	V _{ss}	V _{ss}	V _{ss}
72	$P6_0/\overline{CS}_4$	$P6_0/\overline{CS}_4$	$P6_0/\overline{CS}_4$	P6 ₀	NC
73	$P6_1/\overline{CS}_5$	$P6_1/\overline{CS}_5$	$P6_1/\overline{CS}_5$	P6 ₁	NC
74	P6 ₂	P6 ₂	P6 ₂	P6 ₂	NC
75	P6 ₃	P6 ₃	P6 ₃	P6 ₃	NC
76	P7 ₃ /TMCI ₁	P7 ₃ /TMCl ₁	P7 ₃ /TMCl ₁	P7 ₃ /TMCl ₁	NC
77	P7 ₄ /TMO ₀	P7₄/TMO₀	P7₄/TMO₀	P7 ₄ /TMO ₀	NC
78	P7 ₅ /TMO ₁	NC			
79	P2 ₇ /PO ₇ /TIOCB ₅	NC			
80	P2 ₆ /PO ₆ /TIOCA ₅	NC			
81	P2 ₅ /PO ₅ /TIOCB ₄	V _{ss}			
82	P2 ₄ /PO ₄ /TIOCA ₄	WE			
83	P2 ₃ /PO ₃ /TIOCD ₃	CE			
84	P2 ₂ /PO ₂ /TIOCC ₃	ŌĒ			
85	P2 ₁ /PO ₁ /TIOCB ₃	NC			

Note: * Only modes 4 and 5 are provided in the ROMless version.

FP-144	Mode 4 ^{*1}	Mode 5 ^{*1}	Mode 6	Mode 7	Flash Memory Programmer Mode
86	P2 ₀ /PO ₀ /TIOCA ₃	P2 ₀ /PO ₀ /TIOCA ₃	P2 ₀ /PO ₀ /TIOCA ₃	P2 ₀ /PO ₀ /TIOCA ₃	NC
87	WDTOVF	WDTOVF	WDTOVF	WDTOVF	NC
88	RES	RES	RES	RES	RES
89	NMI	NMI	NMI	NMI	V _{cc}
90	STBY	STBY	STBY	STBY	V _{cc}
91	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}
92	XTAL	XTAL	XTAL	XTAL	XTAL
93	EXTAL	EXTAL	EXTAL	EXTAL	EXTAL
94	V _{ss}	V _{ss}	V _{ss}	V _{ss}	V _{ss}
95	PF ₇ /ø	PF ₇ /ø	PF ₇ /ø	PF ₇ /ø	NC
96	V _{cc}	V _{cc}	V _{cc}	V _{cc}	V _{cc}
97	FWE (EMLE)* ²	FWE (EMLE)*2	FWE (EMLE)*2	FWE (EMLE)*2	FWE (EMLE)*2
98	PF_{6}/\overline{AS}	PF_{6}/\overline{AS}	PF_{6}/\overline{AS}	PF ₆	NC
99	RD	RD	RD	PF₅	NC
100	HWR	HWR	HWR	PF ₄	NC
101	PF₃/ LWR	PF ₃ / LWR	PF ₃ / LWR	PF ₃	NC
102	$\frac{PF_2}{\overline{DREQO}}$	$\frac{PF_2}{BREQO}/$	PF ₂ / LCAS / BREQO	PF ₂	NC
103	PF ₁ /BACK	PF ₁ /BACK	PF ₁ /BACK	PF ₁	NC
104	PF₀/BREQ	PF ₀ /BREQ	PF ₀ /BREQ	PF ₀	NC
105	$P5_0/TxD_2/\overline{IRQ}_4$	$P5_0/TxD_2/\overline{IRQ}_4$	$P5_0/TxD_2/\overline{IRQ}_4$	$P5_0/TxD_2/\overline{IRQ}_4$	NC
106	$P5_1/RxD_2/\overline{IRQ}_5$	$P5_1/RxD_2/\overline{IRQ}_5$	$P5_1/RxD_2/\overline{IRQ}_5$	$P5_1/RxD_2/\overline{IRQ}_5$	NC
107	$P5_2/SCK_2/\overline{IRQ}_6$	P5 ₂ /SCK ₂ /IRQ ₆	P5 ₂ /SCK ₂ /IRQ ₆	P5 ₂ /SCK ₂ /IRQ ₆	NC
108	P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	P5 ₃ /ADTRG/ IRQ ₇ /WAIT/ BREQO	P5 ₃ /ADTRG/ IRQ ₇	NC
109	P5 ₄ /AN ₁₂	P5 ₄ /AN ₁₂	P5 ₄ /AN ₁₂	P5 ₄ /AN ₁₂	NC
110	P5 ₅ /AN ₁₃	P5₅/AN ₁₃	P5 ₅ /AN ₁₃	P5 ₅ /AN ₁₃	NC
111	P5 ₆ /AN ₁₄ /DA ₂	P5 ₆ /AN ₁₄ /DA ₂	P5 ₆ /AN ₁₄ /DA ₂	P5 ₆ /AN ₁₄ /DA ₂	NC
112	P5 ₇ /AN ₁₅ /DA ₃	P5 ₇ /AN ₁₅ /DA ₃	P5 ₇ /AN ₁₅ /DA ₃	P5 ₇ /AN ₁₅ /DA ₃	NC

Pin Name

Notes: 1. Only modes 4 and 5 are provided in the ROMless version.

Pin No.

2. The FWE pin applies to the H8S/2338 F-ZTAT version only. The EMLE pin applies to the H8S/2339 F-ZTAT version only.

Pin No.

FP-144	Mode 4*	Mode 5*	Mode 6	Mode 7	Flash Memory Programmer Mode
113	AV _{cc}	AV _{cc}	AV _{cc}	AV _{cc}	V _{cc}
114	V_{ref}	V _{ref}	V _{ref}	V _{ref}	V _{cc}
115	P4 ₀ /AN ₀	NC			
116	P4 ₁ /AN ₁	NC			
117	P4 ₂ /AN ₂	NC			
118	P4 ₃ /AN ₃	NC			
119	P4 ₄ /AN ₄	NC			
120	P4 ₅ /AN ₅	NC			
121	P4 ₆ /AN ₆ /DA ₀	NC			
122	P4 ₇ /AN ₇ /DA ₁	NC			
123	AV _{ss}	AV _{ss}	AV _{ss}	AV _{SS}	V _{ss}
124	V _{ss}	V _{SS}	V _{SS}	V _{ss}	V _{ss}
125	P1 ₇ /PO ₁₅ / TIOCB ₂ /TCLKD	NC			
126	P1 ₆ /PO ₁₄ / TIOCA ₂	NC			
127	P1₅/PO ₁₃ / TIOCB₁/TCLKC	P1 ₅ /PO ₁₃ / TIOCB ₁ /TCLKC	P1 ₅ /PO ₁₃ / TIOCB ₁ /TCLKC	P1 ₅ /PO ₁₃ / TIOCB ₁ /TCLKC	NC
128	P1 ₄ /PO ₁₂ / TIOCA ₁	NC			
129	P1 ₃ /PO ₁₁ / TIOCD ₀ /TCLKB	NC			
130	P1 ₂ /PO ₁₀ / TIOCC ₀ /TCLKA	NC			
131	P1 ₁ /PO ₉ /TIOCB ₀	NC			
132	P1 ₀ /PO ₈ /TIOCA ₀	NC			
133	P8 ₀ /DREQ ₀	NC			
134	P8 ₁ /DREQ ₁	NC			
135	MD ₀	MD _o	MD _o	MD _o	V _{ss}
136	MD ₁	MD ₁	MD ₁	MD ₁	V _{ss}

Note: * Only modes 4 and 5 are provided in the ROMless version.

Pin No.	Pin Name						
FP-144	Mode 4*	Mode 5*	Mode 6	Mode 7	Flash Memory Programmer Mode		
137	MD ₂	MD ₂	MD ₂	MD ₂	V _{ss}		
138	P8 ₂ /TEND ₀	NC					
139	P8 ₃ /TEND ₁	NC					
140	PG₀/CAS	PG ₀ / CAS	PG₀/ CAS	PG₀	NC		
141	PG_1/\overline{CS}_3	PG_1/\overline{CS}_3	PG_1/\overline{CS}_3	PG1	NC		
142	PG_2/\overline{CS}_2	PG_2/\overline{CS}_2	PG_2/\overline{CS}_2	PG ₂	NC		
143	PG_3/\overline{CS}_1	PG_{3}/\overline{CS}_{1}	PG_{3}/\overline{CS}_{1}	PG_3	NC		
144	PG_4/\overline{CS}_0	PG_4/\overline{CS}_0	PG_4/\overline{CS}_0	PG_4	NC		

Note: * Only modes 4 and 5 are provided in the ROMless version.

1.5 **Pin Functions**

Table 1.3Pin Functions

	Symbol	Pin No.				
Туре		FP-144	I/O	Name and Function		
Power	V _{cc}	3, 39, 61, 91, 96	Input	Power supply: For connection to the power supply. All V_{cc} pins should be connected to the system power supply.		
	V _{ss}	9, 18, 27, 47, 56, 71, 94, 124	Input	Ground: For connection to ground (0 V). All V_{ss} pins should be connected to the system power supply (0 V).		
Clock	XTAL	92	Input	Connects to a crystal resonator. See section 18, Clock Pulse Generator, in the Hardware Manual, for typical connection diagrams for a crystal resonator and external clock input.		
	EXTAL	93	Input	Connects to a crystal resonator. The EXTAL pin can also input an external clock. See section 18, Clock Pulse Generator, in the Hardware Manual, for typical connection diagrams for a crystal resonator and external clock input.		
	Ø	95	Output	System clock: Supplies the system clock to an external device.		

		Pin No.						
Туре	Symbol	FP-144	_ I/O	Name	and F	unctio	n	
Operating mode control	MD ₂ to MD ₀	137 to 135	Input	Mode pins: These pins set the operating mode. The relation between the settings of pins MD_2 to MD_0 and the operating mode is shown below. These pins should not be changed while the chip is operating. H8S/2338 F-ZTAT version:				
				FWE	MD ₂	MD ₁	MD₀	Operating Mode
				0	0	0	0	_
							1	_
						1	0	_
							1	_
					1	0	0	Mode 4
							1	Mode 5
						1	0	Mode 6
							1	Mode 7
				1	0	0	0	_
							1	_
						1	0	Mode 10
							1	Mode 11
					1	0	0	_
							1	

1

0

1

Mode 14

Mode 15

		Pin No.							
Туре	Symbol	FP-144	I/O	Name and Function					
Operating mode control	MD ₂ to MD ₀	137 to 135	i Input	H8S/2339 F-ZTAT version, Mask ROM, and ROMless versions:					
				MD_2	\mathbf{MD}_{1}	MD₀	Operating Mode		
				0	0	0	_		
						1	_		
					1	0	_		
						1	_		
				1	0	0	Mode 4		
						1	Mode 5		
					1	0	Mode 6*		
						1	Mode 7*		
						and 7 are s version.	e not provided in the		
System control	RES	88	Input	Reset input: When this pin is driven low, the chip is reset.					
	STBY	90	Input	Standby: When this pin is driven low, a transition is made to hardware standby mode.					
	BREQ	104	Input	Bus request: Used by an external bus master to issue a bus request to the chip.					
	BREQO	102,108	Output	Bus request output: The external bus request signal used when an internal bus master accesses external space in the external bus-released state.					
	BACK	103	Output	Bus request acknowledge: Indicates that the bus has been released to an external bus master.					
	FWE* ¹	97	Input	Flash write enable: Enables/disables flash memory programming. In the mask ROM version and ROMless versions, connect this pin to ground.					
	EMLE* ²	97	Input	Emulate (0 V).	or enab	le: For co	nnection to ground		

Notes: 1. Applies to the H8S/2338 F-ZTAT version only.

2. Applies to the H8S/2339 F-ZTAT version only.

		Pin No.				
Туре	Symbol	FP-144	I/O	Name and Function		
Interrupts	NMI	89	Input	Nonmaskable interrupt: Requests a nonmaskable interrupt. When this pin is not used, it should be fixed high.		
	\overline{IRQ}_7 to IRQ_0	32 to 34, 40 to 42, 37, 38 108 to 105	Input	Interrupt request 7 to 0: These pins request a maskable interrupt.		
Address bus	A_{23} to A_0	31 to 28, 26 to 19, 17 to 10, 8 to 5	Output	Address bus: These pins output an address.		
Data bus	D ₁₅ to D ₀	60 to 57, 55 to 48, 46 to 43	I/O	Data bus: These pins constitute a bidirectional data bus.		
Bus control	\overline{CS}_7 to \overline{CS}_0	35, 36, 61, 60, 141 to 144	Output	Chip select: Signals for selecting areas 7 to 0.		
	ĀS	98	Output	Address strobe: When this pin is low, it indicates that address output on the address bus is enabled.		
	RD	99	Output	Read: When this pin is low, it indicates that the external address space can be read.		
	HWR	100	Output	High write/write enable: A strobe signal that writes to external space and indicates that the upper half (D_{15} to D_8) of the data bus is enabled. The 2-CAS type DRAM write enable signal.		
	LWR	101	Output	Low write: A strobe signal that writes to external space and indicates that the lower half (D_7 to D_0) of the data bus is enabled.		
	CAS	140	Output	Upper column address strobe/column address strobe: The 2-CAS type DRAM upper column address strobe signal.		
	LCAS	102	Output	Lower column address strobe: The 2-CAS type DRAM lower column address strobe signal.		

		Pin No.		
Туре	Symbol	FP-144	I/O	Name and Function
Bus control	WAIT	4,108	Input	Wait: Requests insertion of a wait state in the bus cycle when accessing external 3-state address space.
DMA controller (DMAC)	$\frac{DREQ}{DREQ}_{0}$	134,133	Input	DMA request 1 and 0: These pins request DMAC activation.
	TEND ₁ , TEND ₀	139,138	Output	DMA transfer end 1 and 0: These pins indicate the end of DMAC data transfer.
	DACK ₁ , DACK ₀	2,1	Output	DMA transfer acknowledge 1 and 0: These are the DMAC single address transfer acknowledge pins.
16-bit timer pulse unit (TPU)	TCLKD to TCLKA	125, 127, 129, 130	Input	Clock input D to A: These pins input an external clock.
	TIOCA ₀ , TIOCB ₀ , TIOCC ₀ , TIOCD ₀	132 to 129) I/O	Input capture/output compare match A0 to D0: The TGR0A to TGR0D input capture input or output compare output, or PWM output pins.
	TIOCA ₁ , TIOCB ₁	128, 127	I/O	Input capture/output compare match A1 and B1: The TGR1A and TGR1B input capture input or output compare output, or PWM output pins.
	TIOCA ₂ , TIOCB ₂	126, 125	I/O	Input capture/output compare match A2 and B2: The TGR2A and TGR2B input capture input or output compare output, or PWM output pins.
	TIOCA ₃ , TIOCB ₃ , TIOCC ₃ , TIOCD ₃	86 to 83	I/O	Input capture/output compare match A3 to D3: The TGR3A to TGR3D input capture input or output compare output, or PWM output pins.
	TIOCA ₄ , TIOCB ₄	82, 81	I/O	Input capture/output compare match A4 and B4: The TGR4A and TGR4B input capture input or output compare output, or PWM output pins.
	TIOCA₅, TIOCB₅	80, 79	I/O	Input capture/output compare match A5 and B5: The TGR5A and TGR5B input capture input or output compare output, or PWM output pins.

		Pin No.		
Туре	Symbol	FP-144	ī/O	Name and Function
Programmable pulse generator (PPG)	PO ₁₅ to PO ₀	125 to 132, 79 to 86	Output	Pulse output 15 to 0: Pulse output pins.
8-bit timer	TMO ₀ , TMO ₁	77, 78	Output	Compare match output: The compare match output pins.
	TMCI ₀ , TMCI ₁	70, 76	Input	Counter external clock input: Input pins for the external clock input to the counter.
	TMRI₀, TMRI₁	68, 69	Input	Counter external reset input: The counter reset input pins.
Watchdog timer (WDT)	WDTOVF	87	Output	Watchdog timer overflow: The counter overflow signal output pin in watchdog timer mode.
Serial communication interface (SCI)/	TxD ₂ , TxD ₁ , TxD ₀	105, 63, 62	Output	Transmit data (channel 0, 1, 2): Data output pins.
smart card interface	RxD ₂ , RxD ₁ , RxD ₀	106, 65, 64	Input	Receive data (channel 0, 1, 2): Data input pins.
	SCK ₂ , SCK ₁ , SCK ₀	107, 67, 66	I/O	Serial clock (channel 0, 1, 2): Clock I/O pins.
A/D converter	AN_{15} to AN_{12} , AN_{7} to AN_{0}	112 to 109, 122 to 115	Input	Analog 15 to 12, and 7 to 0: Analog input pins.
	ADTRG	108	Input	A/D conversion external trigger input: Pin for input of an external trigger to start A/D conversion.
D/A converter	DA ₃ , DA ₂ , DA ₁ , DA ₀	112, 111, 122, 121	Output	Analog output: D/A converter analog output pins.

		Pin No.		
Туре	Symbol	FP-144	I/O	Name and Function
A/D converter and D/A converter	AV _{cc}	113	Input	This is the power supply pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+3 V).
	AV _{ss}	123	Input	This is the ground pin for the A/D converter and D/A converter. This pin should be connected to the system power supply (0 V).
	V _{ref}	114	Input	This is the reference voltage input pin for the A/D converter and D/A converter. When the A/D converter and D/A converter are not used, this pin should be connected to the system power supply (+3 V).
I/O ports	$P1_7$ to $P1_0$	125 to 132	I/O	Port 1: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 1 data direction register (P1DDR).
	P2 ₇ to P2 ₀	79 to 86	I/O	Port 2: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 2 data direction register (P2DDR).
	P3₅ to P3₀	67 to 62	I/O	Port 3: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 3 data direction register (P3DDR).
	P4 ₇ to P4 ₀	122 to 115	Input	Port 4: An 8-bit input port.
	P5 ₇ to P5 ₀	112 to 109, 108 to 105	Input I/O	Port 5: A 4-bit input port and a 4-bit I/O port. For $P5_3$ to $P5_0$, input or output can be designated for each bit by means of the port 5 data direction register (P5DDR).
	P6 ₇ to P6 ₀	35 to 38, 75 to 72	I/O	Port 6: An 8-bit I/O port. Input or output can be designated for each bit by means of the port 6 data direction register (P6DDR).
	P7 ₅ to P7 ₀	78 to 76, 70 to 68	I/O	Port 7: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 7 data direction register (P7DDR).
	$P8_6$ to $P8_0$	4, 2, 1, 139, 138, 134, 133	I/O	Port 8: A 7-bit I/O port. Input or output can be designated for each bit by means of the port 8 data direction register (P8DDR).

		Pin No.		
Туре	Symbol	FP-144	I/O	Name and Function
I/O ports	P9 ₇ to P9 ₂	32 to 34, 40 to 42	I/O	Port 9: A 6-bit I/O port. Input or output can be designated for each bit by means of the port 9 data direction register (P9DDR).
	PA_7 to PA_0	31 to 28, 26 to 23	I/O	Port A: An 8-bit I/O port. Input or output can be designated for each bit by means of the port A data direction register (PADDR).
	PB ₇ to PB ₀	22 to 19, 17 to 14	I/O	Port B: An 8-bit I/O port. Input or output can be designated for each bit by means of the port B data direction register (PBDDR).
	PC_7 to PC_0	13 to 10, 8 to 5	I/O	Port C: An 8-bit I/O port. Input or output can be designated for each bit by means of the port C data direction register (PCDDR).
	PD ₇ to PD ₀	60 to 57, 55 to 52	I/O	Port D: An 8-bit I/O port. Input or output can be designated for each bit by means of the port D data direction register (PDDDR).
	PE ₇ to PE ₀	51 to 48, 46 to 43	I/O	Port E: An 8-bit I/O port. Input or output can be designated for each bit by means of the port E data direction register (PEDDR).
	PF_7 to PF_0	95, 98 to 104	I/O	Port F: An 8-bit I/O port. Input or output can be designated for each bit by means of the port F data direction register (PFDDR).
	PG₄ to PG₀	144 to 140	I/O	Port G: A 5-bit I/O port. Input or output can be designated for each bit by means of the port G data direction register (PGDDR).

1.6 Product Lineup

Table 1.4	H8S/2339,	H8S/2338 Series	Product Lineup
	100/100/9	100/10000	- router miter

			Package (Hitachi Package Code)
F-ZTAT™ version	HD64F2339	HD64F2339VFC	144-pin QFP (FP-144G)
Mask ROM version	HD6432338	HD6432338FC	144-pin QFP (FP-144G)
F-ZTAT™ version	HD64F2338	HD64F2338VFC	144-pin QFP (FP-144G)
Mask ROM version	HD6432337	HD6432337FC	144-pin QFP (FP-144G)
ROMIess version	HD6412332	HD6412332VFC	144-pin QFP (FP-144G)
	Mask ROM version F-ZTAT™ version Mask ROM version ROMless	VersionHD6432338Mask ROMHD6432338versionHD64F2338versionMask ROMMask ROMHD6432337versionVersionROMlessHD6412332	versionHD6432338HD6432338FCMask ROMHD6432338HD6432338FCversionF-ZTAT™HD64F2338HD64F2338VFCversionMask ROMHD6432337HD6432337FCversionROMlessHD6412332HD6412332VFC

Note: * Under development

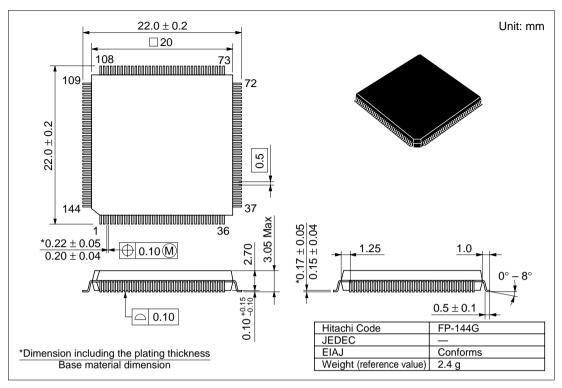


Figure 1.3 FP-144G Package Dimensions

Section 2 MCU Operating Modes

2.1 Overview

2.1.1 Operating Mode Selection (H8S/2338 F-ZTAT Version)

This version has eight operating modes (modes 4 to 7, 10, 11, 14 and 15). These modes are determined by the mode pin (MD_2 to MD_0) and flash write enable pin (FWE) settings. The CPU operating mode and initial bus width can be selected as shown in table 2.1.

Table 2.1 lists the MCU operating modes.

Table 2.1 MCU Operating Mode Selection (H8S/2338 F-ZTAT Version)

MCU					CPU				al Data us
Operating Mode	FWE	MD ₂	MD₁	MD₀	Operating Mode	Description	On-Chip ROM	Initial Value	Max. Value
0	0	0	0	0	_	_	_	_	_
1				1					
2	-		1	0	-				
3	-			1	-				
4		1	0	0	Advanced	Expanded mode with	Disabled	16 bits	16 bits
5	=			1	-	on-chip ROM disabled		8 bits	16 bits
6	-		1	0	-	Expanded mode with on-chip ROM enabled	Enabled	8 bits	16 bits
7	-			1	-	Single-chip mode	-	_	_
8	1	0	0	0	—	_	_	—	_
9	=			1	-				
10	-		1	0	Advanced	Boot mode	Enabled	8 bits	16 bits
11	=			1	-			_	_
12		1	0	0	_	_	_	_	_
13	-			1	-				
14	-		1	0	Advanced	User program mode	Enabled	8 bits	16 bits
15	-			1	-			_	_

The CPU's architecture allows for 4 Gbytes of address space, but this version actually accesses a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set. Note that the functions of each pin depend on the operating mode.

Modes 10, 11, 14, and 15 are boot modes and user program modes in which the flash memory can be programmed and erased. For details, see section 17, ROM, in the Hardware Manual

This version can only be used in modes 4 to 7, 10, 11, 14, and 15. This means that the flash write enable pin and mode pins must be set to select one of these modes.

Do not change the inputs at the mode pins during operation.

2.1.2 Operating Mode Selection (H8S/2339 F-ZTAT Version, Mask ROM, and ROMless Versions)

These versions have four operating modes (modes 4 to 7). The operating mode is determined by the mode pins (MD_2 to MD_0). The CPU operating mode, enabling or disabling of on-chip ROM, and the initial bus width setting can be selected as shown in table 2.2.

Table 2.2 lists the MCU operating modes.

МСИ	U CPU					External Data Bus		
Operating Mode	MD ₂	MD₁	MD₀	Operating Mode	Description	On-Chip ROM	Initial Value	Max. Value
0	0	0	0	_	_	—	_	—
1	_		1					
2		1	0	_				
3			1	_				
4*	1	0	0	Advanced	Expanded mode with	Disabled	16 bits	16 bits
5*			1	_	on-chip ROM disabled		8 bits	16 bits
6	_	1	0	_	Expanded mode with on-chip ROM enabled	Enabled	8 bits	16 bits
7	_		1	_	Single-chip mode		—	—

Table 2.2MCU Operating Mode Selection (H8S/2339 F-ZTAT Version, Mask ROM, and
ROMless Versions)

Note: * Only modes 4 and 5 are provided in the ROMless version.

The CPU's architecture allows for 4 Gbytes of address space, but these versions actually access a maximum of 16 Mbytes.

Modes 4 to 6 are externally expanded modes that allow access to external memory and peripheral devices.

The external expansion modes allow switching between 8-bit and 16-bit bus modes. After program execution starts, an 8-bit or 16-bit address space can be set for each area, depending on the bus controller setting. If 16-bit access is selected for any one area, 16-bit bus mode is set; if 8-bit access is selected for all areas, 8-bit bus mode is set. Note that the functions of each pin depend on the operating mode.

These versions can only be used in modes 4 to 7. This means that the mode pins must be set to select one of these modes. However, note that only mode 4 or 5 can be set for the ROMless version.

Do not change the inputs at the mode pins during operation.

2.1.3 Register Configuration

The H8S/2339 and H8S/2338 Series have a mode control register (MDCR) that indicates the inputs at the mode pins (MD_2 to MD_0), and a system control register (SYSCR) and system control register 2 (SYSCR2)*² that control the operation of the chip. Table 2.3 summarizes these registers.

Table 2.3 Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Mode control register	MDCR	R	Undefined	H'FF3B
System control register	SYSCR	R/W	H'01	H'FF39
System control register 2*2	SYSCR2	R/W	H'00	H'FF42

Notes: 1. Lower 16 bits of the address.

 The SYSCR2 register can only be used in the F-ZTAT version. In the mask ROM and ROMless versions this register will return an undefined value if read, and cannot be modified.

2.2 Register Descriptions

Bit :	7	6	5	4	3	2	1	0
			—	—	—	MDS2	MDS1	MDS0
Initial value :	1	0	0	0	0	*	*	*
R/W :	—	_	_	_	_	R	R	R

2.2.1 Mode Control Register (MDCR)

Note: * Determined by pins MD₂ to MD₀.

MDCR is an 8-bit read-only register that indicates the current operating mode of the H8S/2338 Series chip.

Bit 7—Reserved: This bit is always read as 1, and cannot be modified.

Bits 6 to 3—Reserved: These bits are always read as 0, and cannot be modified.

Bits 2 to 0—Mode Select 2 to 0 (MDS2 to MDS0): These bits indicate the input levels at pins MD_2 to MD_0 (the current operating mode). Bits MDS2 to MDS0 correspond to pins MD_2 to MD_0 . MDS2 to MDS0 are read-only bits, and cannot be written to. The mode pin (MD_2 to MD_0) input levels are latched into these bits when MDCR is read. These latches are canceled by a reset.

2.2.2 System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		—	—	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial va	lue :	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W

Bit 7—Reserved: Only 0 should be written to this bit.

Bit 6-Reserved: This bit is always read as 0, and cannot be modified.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select the control mode of the interrupt controller. For details of the interrupt control modes, see section 3.4.1, Interrupt Control Modes and Interrupt Operation, in the Hardware Manual.

Bit 5 INTM1	Bit 4 INTM0	Interrupt Control Mode	Description	
0	0	0	Control of interrupts by I bit	(Initial value)
	1	—	Setting prohibited	
1	0	2	Control of interrupts by I2 to I0 bits ar	nd IPR
	1	—	Setting prohibited	

Bit 3-NMI Edge Select (NMIEG): Selects the valid edge of the NMI interrupt input.

Bit 3 NMIEG	Description	
0	An interrupt is requested at the falling edge of NMI input	(Initial value)
1	An interrupt is requested at the rising edge of NMI input	

Bit 2—LWR Output Disable (LWROD): Enables or disables LWR output.

Bit 2 LWROD	Description	
0	$PF_{\mathfrak{z}}$ is designated as \overline{LWR} output pin	(Initial value)
1	$PF_{\scriptscriptstyle 3}$ is designated as I/O port, and does not function as \overline{LWR} output pin	

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for \overline{IRQ}_4 to \overline{IRQ}_7 . \overline{IRQ}_4 to \overline{IRQ}_7 input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	$P9_4$ to $P9_7$ are used for \overline{IRQ}_4 to \overline{IRQ}_7 input	(Initial value)
1	$P5_3$ to $P5_0$ are used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables the on-chip RAM. The RAME bit is initialized when the reset state is released. It is not initialized in software standby mode.

Bit 0 RAME	Description	
0	On-chip RAM is disabled	
1	On-chip RAM is enabled	(Initial value)

2.2.3 System Control Register 2 (SYSCR2) (F-ZTAT Version Only)

Bit	:	7	6	5	4	3	2	1	0
		—	_	—	—	FLSHE	—	—	_
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	—	_	—	—	R/W	—	—	—

SYSCR2 is an 8-bit readable/writable register that performs on-chip flash memory control.

SYSCR2 is initialized to H'00 by a reset, and in hardware standby mode.

Bits 7 to 4—Reserved: These bits are always read as 0, and cannot be modified.

Bit 3—Flash Memory Control Register Enable (FLSHE): Controls CPU access to the flash memory control registers (FLMCR1, FLMCR2, EBR1, and EBR2). For details, see section 17, ROM, in the Hardware Manual.

Bit 3 FLSHE	Description
0	Flash control registers are not selected for addresses H'FFFFC8 to H'FFFFCB (Initial value)
1	Flash control registers are selected for addresses H'FFFFC8 to H'FFFFCB

Bits 2 to 0—Reserved: These bits are always read as 0, and cannot be modified.

2.3 **Operating Mode Descriptions**

2.3.1 Modes 1 to 3

Modes 1 to 3 are not supported in the H8S/2339 and H8S/2338 Series, and must not be set.

2.3.2 Mode 4 (Expanded Mode with On-Chip ROM Disabled)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Ports A, B, and C function as an address bus, port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 16 bits, with 16-bit access to all areas. However, note that if 8-bit access is designated by the bus controller for all areas, the bus mode switches to 8 bits.

2.3.3 Mode 5 (Expanded Mode with On-Chip ROM Disabled)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is disabled.

Ports A, B and C function as an address bus, port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if at least one area is designated for 16-bit access by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

2.3.4 Mode 6 (Expanded Mode with On-Chip ROM Enabled)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled.

Ports A, B, and C function as input ports immediately after a reset. These pins can be set to output addresses by setting the corresponding data direction register (DDR) bits to 1. Port D functions as a data bus, and part of port F carries bus control signals.

The initial bus mode after a reset is 8 bits, with 8-bit access to all areas. However, note that if at least one area is designated for 16-bit access by the bus controller, the bus mode switches to 16 bits and port E becomes a data bus.

2.3.5 Mode 7 (Single-Chip Mode)

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is enabled, but external addresses cannot be accessed.

All I/O ports are available for use as input/output ports.

2.3.6 Modes 8 and 9

Modes 8 and 9 are not supported and must not be set.

2.3.7 Mode 10 (H8S/2338 F-ZTAT Version Only)

This is a flash memory boot mode. For details, see section 17, ROM, in the Hardware Manual.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced expanded mode with on-chip ROM enabled.

2.3.8 Mode 11 (H8S/2338 F-ZTAT Version Only)

This is a flash memory boot mode. For details, see section 17, ROM, in the Hardware Manual.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced single-chip mode.

2.3.9 Modes 12 and 13

Modes 12 and 13 are not supported and must not be set.

2.3.10 Mode 14 (H8S/2338 F-ZTAT Version Only)

This is a flash memory user program mode. For details, see section 17, ROM, in the Hardware Manual.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced expanded mode with on-chip ROM enabled.

2.3.11 Mode 15 (H8S/2338 F-ZTAT Version Only)

This is a flash memory user program mode. For details, see section 17, ROM, in the Hardware Manual.

Except for the fact that flash memory programming and erasing can be performed, operation in this mode is the same as in advanced single-chip mode.

2.4 Pin Functions in Each Operating Mode

The pin functions of ports A to F vary depending on the operating mode. Table 2.4 shows their functions in each operating mode.

Port		Mode 4	Mode 5	Mode 6	Mode 7	Mode 10	Mode 11	Mode 14	Mode 15
Port A	PA_7 to PA_5	P*/A	P*/A	P*/A	Р	P*/A	Р	P*/A	Р
	PA ₄ to PA ₀	А	А						
Port B		А	А	P*/A	Р	P*/A	Р	P*/A	Р
Port C		А	А	P*/A	Р	P*/A	Р	P*/A	Р
Port D		D	D	D	Р	D	Р	D	Р
Port E		P/D*	P*/D	P*/D	Р	P*/D	Р	P*/D	Р
Port F	PF ₇	P/C*	P/C*	P/C*	P*/C	P/C*	P*/C	P/C*	P*/C
	PF ₆	P/C*	P/C*	P/C*	Р	P/C*	Р	P/C*	Р
	PF_5 to PF_4	С	С	С		С		С	
	PF ₃	P/C*	P/C*	P/C*		P/C*		P/C*	
	PF_2 to PF_0	P*/C	P*/C	P*/C		P*/C		P*/C	

Table 2.4 Pin Functions in Each Mode

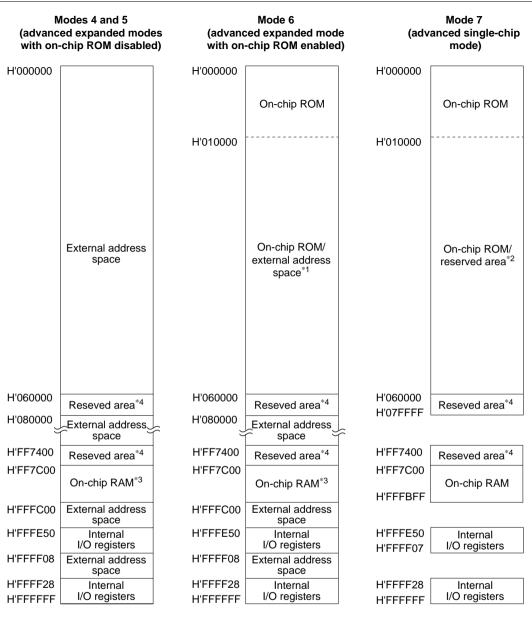
Legend

P: I/O port

A: Address bus output

D: Data bus I/O

C: Control signals, clock I/O


Note: * After reset

2.5 Memory Map in Each Operating Mode

Figures 2.1 to 2.4 show memory maps for each of the operating modes.

The address space is 16 Mbytes.

The address space is divided into eight areas.

Notes: 1. External addresses when EAE = 1 in BCRL; on-chip ROM when EAE = 0.

- 2. Reserved area when EAE = 1 in BCRL; on-chip ROM when EAE = 0.
- 3. External addresses can be accessed by clearing the RAME bit in SYSCR to 0.
- 4. Access to the reserved areas H'060000 to H'07FFFF and H'FF7400 to H'FF7BFF is prohibited.

Figure 2.1 H8S/2339 Memory Map in Each Operating Mode

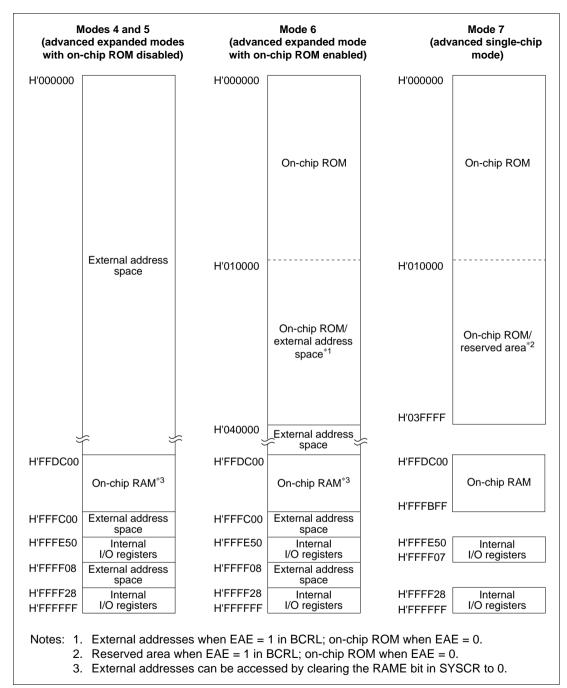
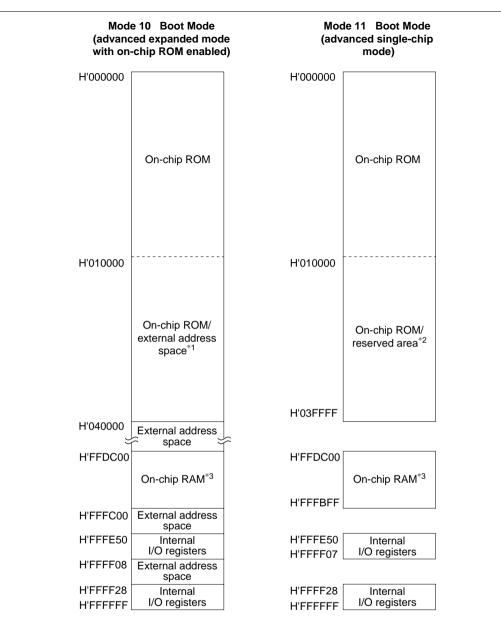
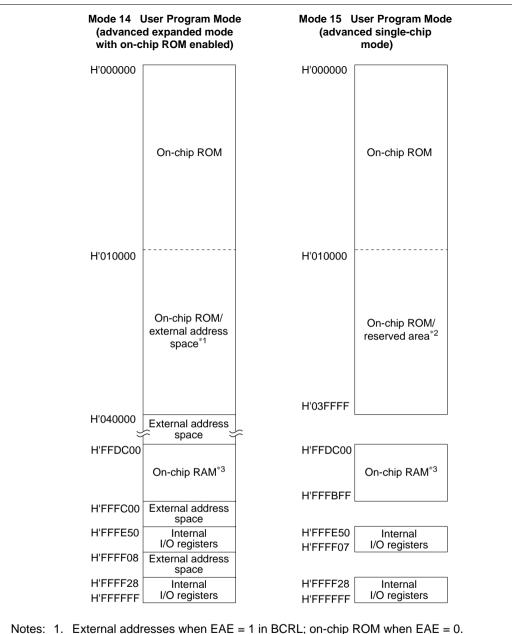




Figure 2.2 H8S/2338 Memory Map in Each Operating Mode

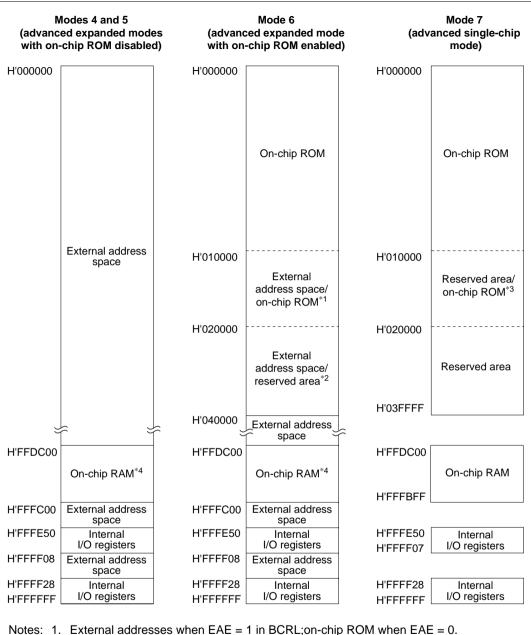

- Notes: 1. External addresses when EAE = 1 in BCRL; on-chip ROM when EAE = 0.
 - 2. Reserved area when EAE = 1 in BCRL; on-chip ROM when EAE = 0.
 - 3. On-chip RAM is used for flash memory programming. Do not clear the RAME bit in SYSCR to 0.

Figure 2.2 H8S/2338 Memory Map in Each Operating Mode (cont) (F-ZTAT Version Only)

- 2. Reserved area when EAE = 1 in BCRL; on-chip ROM when EAE = 0.
 - 3. On-chip RAM is used for flash memory programming. Do not clear the RAME bit in SYSCR to 0.

Figure 2.2 H8S/2338 Memory Map in Each Operating Mode (cont) (F-ZTAT Version Only)

2. External addresses when EAE = 1 in BCRL; reserved area when EAE = 0.

3. Reserved area when EAE = 1 in BCRL; on-chip ROM when EAE = 0.

4. External addresses can be accessed by clearing the RAME bit in SYSCR to 0.

Figure 2.3 H8S/2337 Memory Map in Each Operating Mode

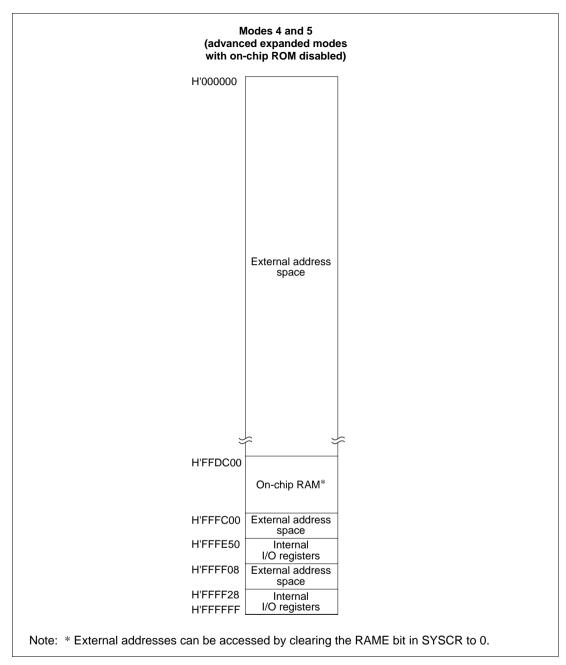


Figure 2.4 H8S/2332 Memory Map in Each Operating Mode

Section 3 Exception Handling and Interrupt Controller

3.1 Overview

3.1.1 Exception Handling Types and Priority

As table 3.1 indicates, exception handling may be caused by a reset, trap instruction, or interrupt. Exception handling is prioritized as shown in table 3.1. If two or more exceptions occur simultaneously, they are accepted and processed in order of priority. Trap instruction exceptions are accepted at all times in the program execution state.

Exception handling sources, the stack structure, and the operation of the CPU vary depending on the interrupt control mode set by the INTM0 and INTM1 bits in SYSCR.

For details of exception handling and the interrupt controller, see section 2, Exception Handling, and section 3, Interrupt Controller, in the Hardware Manual.

Priority	Exception Type	Start of Exception Handling
High	Reset	Starts after a low-to-high transition at the $\overline{\text{RES}}$ pin, or when the watchdog timer overflows
	Trace*1	Starts when execution of the current instruction or exception handling ends, if the trace (T) bit is set to 1
Low	Interrupt	Starts when execution of the current instruction or exception handling ends, if an interrupt request has been issued* ²
	Trap instruction* ³ (TRAPA)	Started by execution of a trap instruction (TRAPA)
Notes: 1.	Traces are enabled onl	y in interrupt control mode 2. Trace exception handling is not

Table 3.1	Exception	Types a	and	Priority

executed after execution of an RTE instruction.

 Interrupt detection is not performed on completion of ANDC, ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.

3. Trap instruction exception handling requests are accepted at all times in the program execution state.

3.2 Interrupt Controller

3.2.1 Interrupt Controller Features

- Two interrupt control modes
 - Either of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).
- Priorities settable with IPRs
 - Interrupt priority registers (IPRs) are provided for setting interrupt priorities. Eight priority levels can be set for each module for all interrupts except NMI.
 - NMI is assigned the highest priority level of 8, and can be accepted at all times.
- Independent vector addresses
 - All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine.
- Nine external interrupt pins
 - NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI.
 - Falling edge, rising edge, or both edge detection, or level sensing, can be selected independently for IRQ₇ to IRQ₀.
- DTC and DMAC control
 - DTC and DMAC activation is controlled by means of interrupts.

3.2.2 Pin Configuration

Table 3.2 Interrupt Controller Pins

Name	Symbol	I/O	Function
Nonmaskable interrupt	NMI	Input	Nonmaskable external interrupt; rising or falling edge can be selected
External interrupt requests 7 to 0	\overline{IRQ}_7 to \overline{IRQ}_0	Input	Maskable external interrupts; rising, falling, or both edges, or level sensing, can be selected

3.3 Interrupt Sources

Interrupt sources comprise external interrupts (NMI and IRQ_7 to IRQ_0) and internal interrupts (52 sources).

3.3.1 External Interrupts

There are nine external interrupts: NMI and IRQ_7 to IRQ_0 . The pins that can be used for IRQ_7 to IRQ_4 interrupt input can be switched by means of the IRQPAS bit in SYSCR. NMI and IRQ_7 to IRQ_0 can be used to restore the chip from software standby mode. (IRQ_7 to IRQ_3 can be used as software standby mode clearing sources by setting the IRQ37S bit in SBYCR to 1.)

NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the CPU regardless of the status of the CPU interrupt mask bits. The NMIEG bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or a falling edge on the NMI pin.

The vector number for NMI interrupt exception handling is 7.

Interrupts IRQ₇ **to IRQ**₀: Interrupts IRQ₇ to IRQ₀ are requested by an input signal at pins $\overline{\text{IRQ}}_7$ to $\overline{\text{IRQ}}_0$. Interrupts IRQ₇ to IRQ₀ have the following features:

- Using ISCR, it is possible to select whether an interrupt is generated by a low level, falling edge, rising edge, or both edges, at pins IRQ₇ to IRQ₀.
- Enabling or disabling of interrupt requests IRQ₇ to IRQ₀ can be selected with IER.
- The interrupt priority level can be set with the IPR registers.
- The status of interrupt requests IRQ₇ to IRQ₀ is indicated in ISR. ISR flags can be cleared to 0 by software.

A block diagram of interrupts IRQ_7 to IRQ_0 is shown in figure 3.1.

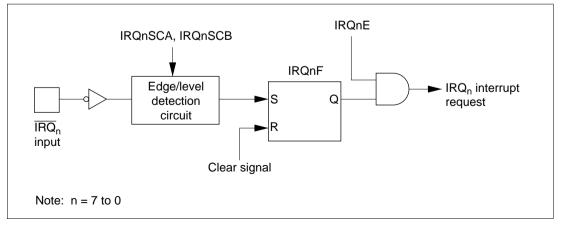
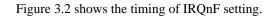



Figure 3.1 Block Diagram of Interrupts IRQ₇ to IRQ₀

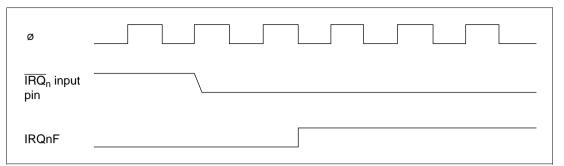


Figure 3.2 Timing of IRQnF Setting

The vector numbers for IRQ₇ to IRQ₀ interrupt exception handling are 23 to 16.

Detection of IRQ_7 to IRQ_0 interrupts does not depend on whether the relevant pin has been set for input or output. When a pin is used as an external interrupt input pin, clear the corresponding DDR bit to 0 and do not use the pin as an I/O pin for another function. Interrupts IRQ_7 to IRQ_4 can be input at pins P9₇ to P9₄ when the IRQPAS bit in SYSCR is cleared to 0, and at pins P5₃ to P5₀ when the IRQPAS bit is set to 1.

3.3.2 Internal Interrupts

There are 52 sources for internal interrupts from on-chip supporting modules.

- 1. For each on-chip supporting module there are flags that indicate the interrupt request status, and enable bits that select enabling or disabling of these interrupts. If any one of these is set to 1, an interrupt request is issued to the interrupt controller.
- 2. The interrupt priority level can be set by means of the IPR registers.
- 3. The DMAC and DTC can be activated by a TPU, SCI, or other interrupt request. When the DMAC or DTC is activated by an interrupt, the interrupt control mode and interrupt mask bits have no effect.

3.3.3 Interrupt Exception Vector Table

Table 3.3 shows interrupt sources, vector addresses, and interrupt priorities. For default priorities, the lower the vector number, the higher the priority. The DMAC or DTC can be activated by an interrupt request.

Priorities among modules can be set by means of the IPR registers. The situation when two or more modules are set to the same priority, and priorities within a module, are fixed as shown in table 3.3.

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
Power-on reset		0	H'0000	—	High		
Reserved		1	H'0004	_			
Reserved for system		2	H'0008	_	Ť		
use		3	H'000C	_			
		4	H'0010	_			
Trace		5	H'0014	_			
Reserved for system use		6	H'0018	_			
NMI	External pin	7	H'001C	_			
Trap instruction		8	H'0020	_			
(4 sources)		9	H'0024	_			
		10	H'0028	_			
		11	H'002C	_			
Reserved for system		12	H'0030	_			
use		13	H'0034	_			
		14	H'0038	_			
		15	H'003C	_			
IRQ ₀	External pin	16	H'0040	IPRA6 to IPRA4	-	0	_
IRQ ₁		17	H'0044	IPRA2 to IPRA0	-	0	_
IRQ ₂		18	H'0048	IPRB6 to IPRB4	-	0	—
IRQ ₃		19	H'004C	_		0	
IRQ ₄	_	20	H'0050	IPRB2 to IPRB0	-	0	_
IRQ₅		21	H'0054	_		0	_
IRQ ₆		22	H'0058	IPRC6 to IPRC4	-	0	_
IRQ ₇		23	H'005C	_	Low	0	_

Table 3.3 Interrupt Sources, Vector Addresses, and Interrupt Priorities

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
SWDTEND (software- activated data transfer end)	DTC	24	H'0060	IPRC2 to IPRC0	High	0	_
WOVI (interval timer)	Watchdog timer	25	H'0064	IPRD6 to IPRD4	-	_	_
CMI (compare match)	Refresh controller	26	H'0068	IPRD2 to IPRD0	-	_	_
Reserved	—	27	H'006C	IPRE6 to IPRE4	-	_	_
ADI (A/D conversion end)	A/D	28	H'0070	IPRE2 to IPRE0	-	0	0
Reserved		29	H'0074	_			_
		30	H'0078				
		31	H'007C				
TGI0A (TGR0A input capture/compare match)	TPU channel 0	32	H'0080	IPRF6 to IPRF4	-	0	0
TGI0B (TGR0B input capture/compare match)	_	33	H'0084	_		0	_
TGI0C (TGR0C input capture/compare match)	_	34	H'0088	_		0	_
TGI0D (TGR0D input capture/compare match)	_	35	H'008C	_		0	_
TCI0V (overflow 0)	_	36	H'0090	_		_	_
Reserved	_	37	H'0094	_		_	_
		38	H'0098	_			
		39	H'009C		Low		

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
TGI1A (TGR1A input capture/compare match)	TPU channel 1	40	H'00A0	IPRF2 to IPRF0	High A	0	0
TGI1B (TGR1B input capture/compare match)		41	H'00A4	_		0	_
TCI1V (overflow 1)	_	42	H'00A8	_		_	_
TCI1U (underflow 1)	_	43	H'00AC	_		_	_
TGI2A (TGR2A input capture/compare match)	TPU channel 2	44	H'00B0	IPRG6 to IPRG4	-	0	0
TGI2B (TGR2B input capture/compare match)	_	45	H'00B4	_		0	—
TCI2V (overflow 2)	_	46	H'00B8	_		_	_
TCI2U (underflow 2)	_	47	H'00BC	_		_	_
TGI3A (TGR3A input capture/compare match)	TPU channel 3	48	H'00C0	IPRG2 to IPRG0	-	0	0
TGI3B (TGR3B input capture/compare match)	_	49	H'00C4	_		0	_
TGI3C (TGR3C input capture/compare match)		50	H'00C8	_		0	_
TGI3D (TGR3D input capture/compare match)		51	H'00CC	_		0	_
TCI3V (overflow 3)	_	52	H'00D0	_		_	_
Reserved		53	H'00D4	_		_	_
		54	H'00D8				
		55	H'00DC		Low		

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
TGI4A (TGR4A input capture/compare match)	TPU channel 4	56	H'00E0	IPRH6 to IPRH4	High	0	0
TGI4B (TGR4B input capture/compare match)	_	57	H'00E4	_		0	_
TCI4V (overflow 4)		58	H'00E8	_		_	_
TCI4U (underflow 4)		59	H'00EC			_	_
TGI5A (TGR5A input capture/compare match)	TPU channel 5	60	H'00F0	IPRH2 to IPRH0		0	0
TGI5B (TGR5B input capture/compare match)	_	61	H'00F4	_		0	_
TCI5V (overflow 5)		62	H'00F8	_		_	_
TCI5U (underflow 5)		63	H'00FC	_		_	_
CMIA0 (compare match A)	8-bit timer channel 0	64	H'0100	IPRI6 to IPRI4		0	_
CMIB0 (compare match B)		65	H'0104			0	_
OVI0 (overflow 0)		66	H'0108			—	_
Reserved	—	67	H'010C				_
CMIA1 (compare match A)	8-bit timer channel 1	68	H'0110	IPRI2 to IPRI0	_	0	_
CMIB1 (compare match B)	_	69	H'0114	_		0	_
OVI1 (overflow 1)		70	H'0118	_		_	_
Reserved	_	71	H'011C		Low	_	

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address*	IPR	Priority	DTC Activa- tion	DMAC Activa- tion
DEND0A (channel 0/channel 0A transfer end)	DMAC	72	H'0120	IPRJ6 to IPRJ4	High	0	
DEND0B (channel 0B transfer end)	_	73	H'0124	_		0	_
DEND1A (channel 1/channel 1A transfer end)	_	74	H'0128	_		0	_
DEND1B (channel 1B transfer end)	_	75	H'012C	_		0	_
Reserved		76	H'0130	_		_	_
		77	H'0134				
		78	H'0138				
		79	H'013C				
ERI0 (receive error 0)	SCI channel 0	80	H'0140	IPRJ2 to IPRJ0	_	_	_
RXI0 (reception complete 0)	_	81	H'0144	_		0	0
TXI0 (transmit data empty 0)	_	82	H'0148	_		0	0
TEI0 (transmit end 0)	_	83	H'014C	_			_
ERI1 (receive error 1)	SCI channel 1	84	H'0150	IPRK6 to IPRK4	_	_	_
RXI1 (reception complete 1)	_	85	H'0154	_		0	0
TXI1 (transmit data empty 1)	_	86	H'0158	_		0	0
TEI1 (transmit end 1)	_	87	H'015C	_		_	_
ERI2 (receive error 2)	SCI channel 2	88	H'0160	IPRK2 to IPRK0	_	_	_
RXI2 (reception complete 2)	_	89	H'0164	_		0	_
TXI2 (transmit data empty 2)	_	90	H'0168	_		0	_
TEI2 (transmit end 2)	-	91	H'016C	-	Low	_	_

Note: * Lower 16 bits of the start address.

3.4 Interrupt Control Modes and Interrupt Operation

Interrupt operations in the H8S/2339 and H8S/2338 Series differ depending on the interrupt control mode.

NMI interrupts are accepted at all times except in the reset state and the hardware standby state. In the case of IRQ interrupts and on-chip supporting module interrupts, an enable bit is provided for each interrupt. Clearing an enable bit to 0 disables the corresponding interrupt request. Interrupt sources for which the enable bit is set to 1 are controlled by the interrupt controller.

The interrupt control modes are shown in table 3.4, the interrupts selected in each interrupt control mode in tables 3.5 and 3.6, and operations and control signal functions in each interrupt control mode in table 3.7.

The interrupt controller performs interrupt control according to the interrupt control mode set by the INTM1 and INTM0 bits in SYSCR, the priorities set in the IPR registers, and the masking state indicated by the I bit in the CPU's CCR and bits I2 to I0 in EXR.

INTM1	INTM0	Priority Setting Registers	Interrupt Mask Bits	Description
0	0	—	Ι	Interrupt mask control is performed by the I bit.
	1	_	_	Setting prohibited
1	0	IPR	12 to 10	8-level interrupt mask control is performed by bits I2 to I0.
				8 priority levels can be set with IPR.
_	1	_	_	Setting prohibited
		0 0 	INTM1 INTM0 Registers 0 0 1	INTM1 INTM0 Setting Interrupt 0 0 - I 1

Table 3.4 Interrupt Control Modes

Table 3.5 Interrupts Selected in Each Interrupt Control Mode (1)

Interrupt Control	Interrupt Mask Bits	
Mode	I	Selected Interrupts
0	0	All interrupts
	1	NMI interrupts
2	*	All interrupts

*: Don't care

Interrupt Control Mode	Selected Interrupts
0	All interrupts
2	Highest-priority-level (IPR) interrupt with priority level greater than the mask level (IPR > I2 to I0)

Table 3.6 Interrupts Selected in Each Interrupt Control Mode (2)

Table 3.7 Operations and Control Signal Functions in Each Interrupt Control Mode

Interrupt	Settings		Interrupt Acceptance Control		8-Level Control			Default Priority T	
Control Mode	INTM1	INTM0		I		l2 to l0	IPR	Determination	(Trace)
0	0	0	0	IM	х	_	<u>*</u> * ²	0	_
2	1	0	х	* ¹	0	IM	PR	0	Т

Legend

O: Interrupt operation control performed

x: No operation (all interrupts enabled)

IM: Used as interrupt mask bit

PR: Sets priority

—: Not used

Notes: 1. Set to 1 when interrupt is accepted.

2. Keep the initial setting.

3.5 Interrupt Response Times

The H8S/2339 and H8S/2338 Series are capable of fast word access to on-chip memory, and the program area is provided in on-chip ROM and the stack area in on-chip RAM, enabling high-speed processing.

Table 3.8 shows interrupt response times—the interval between generation of an interrupt request and execution of the first instruction in the interrupt handling routine. The execution phase symbols used in table 3.8 are explained in table 3.9.

		Advanced Mode				
No.	Execution Phase	INTM1 = 0	INTM1 = 1			
1	Interrupt priority determination*1	3	3			
2	Number of wait states until executing instruction ends* ²	1 to 19 + 2 · S ₁	1 to 19 + 2 · S _i			
3	PC, CCR, and EXR stacking	$2 \cdot S_{\kappa}$	$3 \cdot S_{\kappa}$			
4	Vector fetch	2 · S ₁	$2 \cdot S_1$			
5	Instruction fetch* ³	$2 \cdot S_{I}$	$2 \cdot S_1$			
6	Internal processing*4	2	2			
Total (v	when using on-chip memory)	12 to 32	13 to 33			

Table 3.8 Interrupt Response Times

Notes: 1. Two states in case of internal interrupt.

- 2. Refers to MULXS and DIVXS instructions.
- 3. Prefetch after interrupt acceptance and interrupt handling routine prefetch.
- 4. Internal processing after interrupt acceptance and internal processing after vector fetch.

Table 3.9 Number of States in Interrupt Handling Routine Execution Phases

	Access To						
		External Device					
		8-	Bit Bus	16-Bit Bus			
Symbol	Internal Memory	2-State Access	3-State Access	2-State Access	3-State Access		
Instruction fetch S ₁	1	4	6 + 2m	2	3 + m		
Branch address read S_J							
Stack manipulation S_{κ}							
Legend							

m: Number of wait states in an external device access

3.6 DTC and DMAC Activation by Interrupt

3.6.1 Overview

In the H8S/2339 and H8S/2338 Series, the DTC and DMAC can be activated by an interrupt. In this case, the following options are available:

- 1. Interrupt request to CPU
- 2. Activation request to DTC
- 3. Activation request to DMAC
- 4. Selection of a number of the above

See table 3.3 for the interrupt requests that can be used to activate the DTC or DMAC. For details, see section 5, DMA Controller, and section 6, Data Transfer Controller, in the Hardware Manual.

3.6.2 Block Diagram

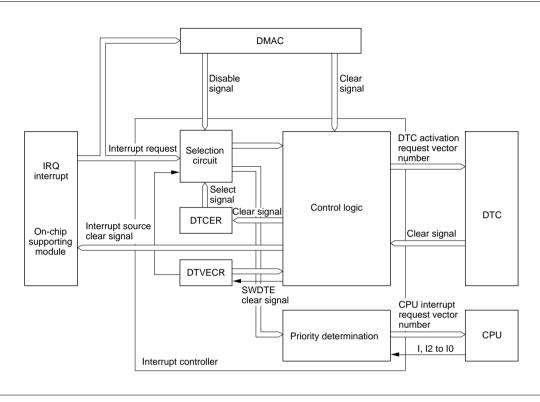


Figure 3.3 shows a block diagram of the DTC, DMAC, and interrupt controller.

Figure 3.3 Interrupt Control for DTC and DMAC

3.6.3 Operation

The interrupt controller has three main functions in DTC and DMAC control, as described below.

Selection of Interrupt Source: With the DMAC, the activation source is input directly to each channel. The activation source for each DMAC channel is selected with bits DTF3 to DTF0 in DMACR. The selected activation source can be managed by the DMAC or selected with the DTA bit in DMABCR. When the DTA bit is set to 1, the interrupt source constituting that DMAC activation source does not function as a DTC activation source or CPU interrupt source.

For interrupt sources other than interrupts managed by the DMAC, it is possible to select DTC activation request or CPU interrupt request with the DTCE bit in DTC registers DTCERA to DTCERF.

After a DTC data transfer, the DTCE bit can be cleared to 0 and an interrupt request sent to the CPU in accordance with the specification of the DISEL bit in the DTC's MRB register.

When the DTC has performed the specified number of data transfers and the transfer counter value is 0, the DTCE bit is cleared to 0 after the DTC data transfer and an interrupt request is sent to the CPU.

Determination of Priority: The DTC activation source is selected in accordance with the default priority order, and is not affected by mask or priority levels. See table 3.10, Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs, for the respective priorities.

With the DMAC, the activation source is input directly to each channel.

Table 3.10 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
Write to DTVECR	Software	DTVECR	H'0400 + (DTVECR [6:0]<<1)	_	High
IRQ ₀	External pin	16	H'0420	DTCEA7	_
IRQ ₁		17	H'0422	DTCEA6	
IRQ ₂		18	H'0424	DTCEA5	_
IRQ ₃		19	H'0426	DTCEA4	_
IRQ ₄		20	H'0428	DTCEA3	
IRQ ₅		21	H'042A	DTCEA2	_
IRQ ₆		22	H'042C	DTCEA1	_
IRQ ₇		23	H'042E	DTCEA0	
ADI (A/D conversion end)	A/D	28	H'0438	DTCEB6	_
TGI0A (GR0A compare match/input capture)	TPU channel 0	32	H'0440	DTCEB5	_
TGI0B (GR0B compare match/input capture)		33	H'0442	DTCEB4	_
TGI0C (GR0C compare match/input capture)		34	H'0444	DTCEB3	_
TGI0D (GR0D compare match/input capture)		35	H'0446	DTCEB2	Low

	Origin of Interrupt	Vector	Vector		
Interrupt Source	Source	Number	Address	DTCE*	Priority
TGI1A (GR1A compare match/input capture)	TPU channel 1	40	H'0450	DTCEB1	High
TGI1B (GR1B compare match/input capture)		41	H'0452	DTCEB0	
TGI2A (GR2A compare match/input capture)	TPU channel 2	44	H'0458	DTCEC7	_
TGI2B (GR2B compare match/input capture)		45	H'045A	DTCEC6	
TGI3A (GR3A compare match/input capture)	TPU channel 3	48	H'0460	DTCEC5	_
TGI3B (GR3B compare match/input capture)	_	49	H'0462	DTCEC4	_
TGI3C (GR3C compare match/input capture)	_	50	H'0464	DTCEC3	_
TGI3D (GR3D compare match/input capture)	_	51	H'0466	DTCEC2	_
TGI4A (GR4A compare match/input capture)	TPU channel 4	56	H'0470	DTCEC1	_
TGI4B (GR4B compare match/input capture)	_	57	H'0472	DTCEC0	_
TGI5A (GR5A compare match/input capture)	TPU channel 5	60	H'0478	DTCED5	
TGI5B (GR5B compare match/input capture)		61	H'047A	DTCED4	
CMIA0	8-bit timer	64	H'0480	DTCED3	
CMIB0	channel 0	65	H'0482	DTCED2	_
CMIA1	8-bit timer	68	H'0488	DTCED1	_
CMIB1	channel 1	69	H'048A	DTCED0	_
DMTEND0A (DMAC transfer end 0)	DMAC	72	H'0490	DTCEE7	-
DMTEND0B (DMAC transfer end 1)	_	73	H'0492	DTCEE6	-
DMTEND1A (DMAC transfer end 2)	_	74	H'0494	DTCEE5	-
DMTEND1B (DMAC transfer end 3)	_	75	H'0496	DTCEE4	Low

Interrupt Source	Origin of Interrupt Source	Vector Number	Vector Address	DTCE*	Priority
RXI0 (reception complete 0)	SCI timer	81	H'04A2	DTCEE3	High
TXI0 (transmit data empty 0)	channel 0	82	H'04A4	DTCEE2	_ ↑
RXI1 (reception complete 1)	SCI timer	85	H'04AA	DTCEE1	_
TXI1 (transmit data empty 1)	channel 1	86	H'04AC	DTCEE0	
RXI2 (reception complete 2)	SCI timer	89	H'04B2	DTCEF7	_ ↓
TXI2 (transmit data empty 2)	channel 2	90	H'04B4	DTCEF6	Low

Note: * DTCE bits with no corresponding interrupt are reserved, and should be written with 0.

Operation Order: If the same interrupt is selected as a DTC activation source and a CPU interrupt source, the DTC data transfer is performed first, followed by CPU interrupt exception handling.

If the same interrupt is selected as a DMAC activation source and a DTC activation source or CPU interrupt source, operations are performed for them independently according to their respective operating statuses and bus mastership priorities.

Table 3.11 summarizes interrupt source selection and interrupt source clearance control according to the setting of the DTA bit in the DMAC's DMABCR register, the DTCE bit of DTC registers DTCERA to DTCERF, and the DISEL bit in the DTC's MRB register.

Table 3.11	Interrupt Source	e Selection and	Clearing Control
I UNIC CITT	meenupeboure	c Sciection and	cicaring control

. . . .

	Setting	S					
DMAC DTC			Interrupt Source Selection/Clearing Control				
DTA	DTCE	DISEL	DMAC	DTC	CPU		
0	0	*	0	Х	O		
	1	0	0	Ô	Х		
		1	0	0	O		
1	*	*	0	Х	Х		

Legend

 $\ensuremath{\mathbb{O}}$: The relevant interrupt is used. Interrupt source clearing is performed.

(The CPU should clear the source flag in the interrupt handling routine.)

- \bigcirc : The relevant interrupt is used. The interrupt source is not cleared.
- X: The relevant bit cannot be used.

*: Don't care

Usage Note: SCI and A/D converter interrupt sources are cleared when the DMAC or DTC reads or writes to the prescribed register, and are not dependent on the DTA and DISEL bits.

Section 4 Bus Controller

4.1 Overview

The H8S/2339 and H8S/2338 Series have an on-chip bus controller (BSC) that manages the external address space divided into eight areas. The bus specifications, such as bus width and number of access states, can be set independently for each area, enabling multiple memories to be connected easily.

The bus controller also has a bus arbitration function, and controls the operation of the internal bus masters—the CPU, DMA controller (DMAC), and data transfer controller (DTC).

4.1.1 Features

The features of the bus controller are listed below.

- · Manages external address space in area units
 - In advanced mode, manages the external space as 8 areas of 2 Mbytes
 - Bus specifications can be set independently for each area
 - DRAM and burst ROM interfaces can be set
- Basic bus interface
 - Chip select signals (\overline{CS}_0 to \overline{CS}_7) can be output for areas 0 to 7
 - 8-bit access or 16-bit access can be selected for each area
 - 2-state access or 3-state access can be selected for each area
 - Program wait states can be inserted for each area
- DRAM interface
 - DRAM interface can be set for areas 2 to 5 (in advanced mode)
 - Row address/column address multiplexed output (8/9/10 bits)
 - 2-CAS access method
 - Burst operation (fast page mode)
 - TP cycle insertion to secure RAS precharging time
 - Selection of CAS-before-RAS refreshing or self-refreshing
- Burst ROM interface
 - Burst ROM interface can be set for area 0
 - Selection of 1- or 2-state burst access

- Idle cycle insertion
 - An idle cycle can be inserted in case of external read cycles in different areas
 - An idle cycle can be inserted in case of an external write cycle immediately after an external read cycle
- Write buffer function
 - External write cycle and internal access can be executed in parallel
 - DMAC single address mode and internal access can be executed in parallel
- Bus arbitration function
 - Includes a bus arbiter that arbitrates bus mastership between the CPU, DMAC, and DTC
- Other features
 - Refresh counter (refresh timer) can be used as an interval timer
 - External bus release function

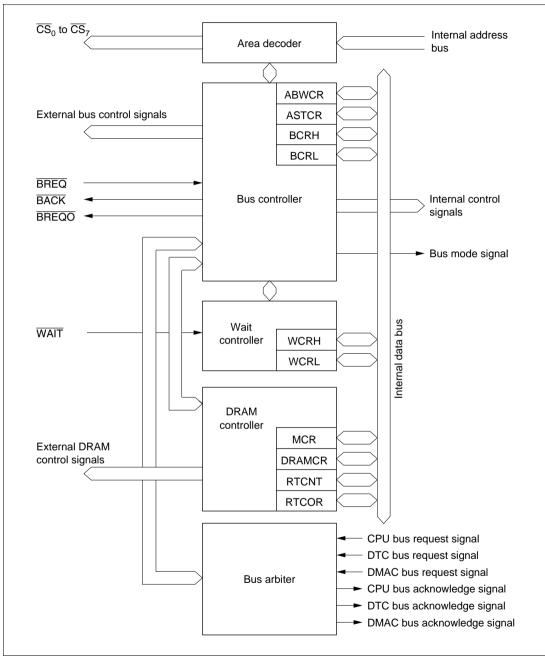


Figure 4.1 Block Diagram of Bus Controller

4.1.3 Pin Configuration

Table 4.1 summarizes the pins of the bus controller.

Table 4.1Bus Controller Pins

Name	Symbol	I/O	Function
Address strobe	ĀS	Output	Strobe signal indicating that address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that external space is being read.
High write/write enable	HWR	Output	Strobe signal indicating that external space is to be written, and upper half (D_{15} to D_8) of data bus is enabled.
			2-CAS DRAM write enable signal.
Low write	LWR	Output	Strobe signal indicating that external space is to be written, and lower half (D_7 to D_0) of data bus is enabled.
Chip select 0	\overline{CS}_0	Output	Strobe signal indicating that area 0 is selected.
Chip select 1	\overline{CS}_1	Output	Strobe signal indicating that area 1 is selected.
Chip select 2/row	\overline{CS}_2	Output	Strobe signal indicating that area 2 is selected.
address strobe 2			DRAM row address strobe signal when area 2 is in DRAM space.
Chip select 3/row	\overline{CS}_3	Output	Strobe signal indicating that area 3 is selected.
address strobe 3			DRAM row address strobe signal when area 3 is in DRAM space.
Chip select 4/row	\overline{CS}_4	Output	Strobe signal indicating that area 4 is selected.
address strobe 4			DRAM row address strobe signal when area 4 is in DRAM space.
Chip select 5/row	\overline{CS}_{5}	Output	Strobe signal indicating that area 5 is selected.
address strobe 5			DRAM row address strobe signal when area 5 is in DRAM space.
Chip select 6	\overline{CS}_6	Output	Strobe signal indicating that area 6 is selected.
Chip select 7	\overline{CS}_7	Output	Strobe signal indicating that area 7 is selected.
Upper column address strobe	CAS	Output	2-CAS DRAM upper column address strobe signal.
Lower column strobe	LCAS	Output	DRAM lower column address strobe signal.
Wait	WAIT	Input	Wait request signal when accessing external 3- state access space.

Name	Symbol	I/O	Function
Bus request	BREQ	Input	Request signal for release of bus to external device.
Bus request acknowledge	BACK	Output	Acknowledge signal indicating that bus has been released.
Bus request output	BREQO	Output	External bus request signal used when internal bus master accesses external space when external bus is released.

4.1.4 Register Configuration

Table 4.2 summarizes the registers of the bus controller.

Table 4.2Bus Controller Registers

			Initial Value	
Name	Abbreviation	R/W	Reset	Address*1
Bus width control register	ABWCR	R/W	H'FF/H'00* ²	H'FED0
Access state control register	ASTCR	R/W	H'FF	H'FED1
Wait control register H	WCRH	R/W	H'FF	H'FED2
Wait control register L	WCRL	R/W	H'FF	H'FED3
Bus control register H	BCRH	R/W	H'D0	H'FED4
Bus control register L	BCRL	R/W	H'3C	H'FED5
Memory control register	MCR	R/W	H'00	H'FED6
DRAM control register	DRAMCR	R/W	H'00	H'FED7
Refresh timer counter	RTCNT	R/W	H'00	H'FED8
Refresh time constant register	RTCOR	R/W	H'FF	H'FED9

Notes: 1. Lower 16 bits of the address.

2. Determined by the MCU operating mode.

4.2 **Register Descriptions**

Bit	:	7	6	5	4	3	2	1	0
	Ī	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 5 to	o 7		¥						
Initial va	lue :	1	1	1	1	1	1	1	1
R/W	:	R/W							
Mode 4									
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

4.2.1 Bus Width Control Register (ABWCR)

ABWCR is an 8-bit readable/writable register that designates each area as either 8-bit access space or 16-bit access space.

ABWCR sets the data bus width for the external memory space. The bus width for on-chip memory and internal I/O registers is fixed regardless of the settings in ABWCR.

After a reset and in hardware standby mode, ABWCR is initialized to H'FF in modes 5 to 7*, and to H'00 in mode 4. It is not initialized in software standby mode.

Note: * Modes 6 and 7 cannot be used in the ROMless version.

Bits 7 to 0—Area 7 to 0 Bus Width Control (ABW7 to ABW0): These bits select whether the corresponding area is to be designated as 8-bit access space or 16-bit access space.

Bit n ABWn	Description
0	Area n is designated for 16-bit access
1	Area n is designated for 8-bit access
(n = 7 to 0)	

4.2.2 Access State Control Register (ASTCR)

Bit	:	7	6	5	4	3	2	1	0
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

ASTCR is an 8-bit readable/writable register that designates each area as either 2-state access space or 3-state access space.

ASTCR sets the number of access states for the external memory space. The number of access states for on-chip memory and internal I/O registers is fixed regardless of the settings in ASTCR.

ASTCR is initialized to H'FF by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 to 0—Area 7 to 0 Access State Control (AST7 to AST0): These bits select whether the corresponding area is to be designated as 2-state access space or 3-state access space.

Wait state insertion is enabled or disabled at the same time.

Bit n ASTn	Description	
0	Area n is designated for 2-state access	
	Wait state insertion in area n external space access is disabled	
1	Area n is designated for 3-state access	(Initial value)
	Wait state insertion in area n external space access is enabled	
(n - 7 to 0)		

(n = 7 to 0)

4.2.3 Wait Control Registers H and L (WCRH, WCRL)

WCRH and WCRL are 8-bit readable/writable registers that select the number of program wait states for each area.

Program waits are not inserted in on-chip memory or internal I/O register access.

WCRH and WCRL are initialized to H'FF by a reset, and in hardware standby mode. They are not initialized in software standby mode.

WCRH

Bit	:	7	6	5	4	3	2	1	0
		W71	W70	W61	W60	W51	W50	W41	W40
Initial va	lue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 7 Wait Control 1 and 0 (W71, W70): These bits select the number of program wait states when area 7 in external space is accessed while the AST7 bit in ASTCR is set to 1.

Bit 7 W71	Bit 6 W70	Description
0	0	Program wait not inserted when external space area 7 is accessed
	1	1 program wait state inserted when external space area 7 is accessed
1	0	2 program wait states inserted when external space area 7 is accessed
	1	3 program wait states inserted when external space area 7 is accessed (Initial value)

Bits 5 and 4—Area 6 Wait Control 1 and 0 (W61, W60): These bits select the number of program wait states when area 6 in external space is accessed while the AST6 bit in ASTCR is set to 1.

Bit 5 W61	Bit 4 W60	Description
0	0	Program wait not inserted when external space area 6 is accessed
	1	1 program wait state inserted when external space area 6 is accessed
1	0	2 program wait states inserted when external space area 6 is accessed
	1	3 program wait states inserted when external space area 6 is accessed (Initial value)

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1.

Bit 3 W51	Bit 2 W50	Description
0	0	Program wait not inserted when external space area 5 is accessed
	1	1 program wait state inserted when external space area 5 is accessed
1	0	2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed (Initial value)

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1.

Bit 1 W41	Bit 0 W40	Description
0	0	Program wait not inserted when external space area 4 is accessed
	1	1 program wait state inserted when external space area 4 is accessed
1	0	2 program wait states inserted when external space area 4 is accessed
	1	3 program wait states inserted when external space area 4 is accessed (Initial value)

WCRL

Bit	:	7	6	5	4	3	2	1	0
		W31	W30	W21	W20	W11	W10	W01	W00
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 3 Wait Control 1 and 0 (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1.

Bit 7 W31	Bit 6 W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed
	1	3 program wait states inserted when external space area 3 is accessed (Initial value)

Bits 5 and 4—Area 2 Wait Control 1 and 0 (W21, W20): These bits select the number of program wait states when area 2 in external space is accessed while the AST2 bit in ASTCR is set to 1.

Bit 5 W21	Bit 4 W20	Description
0	0	Program wait not inserted when external space area 2 is accessed
	1	1 program wait state inserted when external space area 2 is accessed
1	0	2 program wait states inserted when external space area 2 is accessed
	1	3 program wait states inserted when external space area 2 is accessed (Initial value)

Bits 3 and 2—Area 1 Wait Control 1 and 0 (W11, W10): These bits select the number of program wait states when area 1 in external space is accessed while the AST1 bit in ASTCR is set to 1.

Bit 3 W11	Bit 2 W10	Description
0 0 Program wait not inserted when exte		Program wait not inserted when external space area 1 is accessed
	1	1 program wait state inserted when external space area 1 is accessed
1	0	2 program wait states inserted when external space area 1 is accessed
	1	3 program wait states inserted when external space area 1 is accessed (Initial value)

Bits 1 and 0—Area 0 Wait Control 1 and 0 (W01, W00): These bits select the number of program wait states when area 0 in external space is accessed while the AST0 bit in ASTCR is set to 1.

Bit 1 W01	Bit 0 W00	Description
0	0	Program wait not inserted when external space area 0 is accessed
	1	1 program wait state inserted when external space area 0 is accessed
1	0	2 program wait states inserted when external space area 0 is accessed
	1	3 program wait states inserted when external space area 0 is accessed (Initial value)

4.2.4 Bus Control Register H (BCRH)

Bit	:	7	6	5	4	3	2	1	0
	Ī	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	RMTS2	RMTS1	RMTS0
Initial va	lue :	1	1	0	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

BCRH is an 8-bit readable/writable register that selects enabling or disabling of idle cycle insertion, and the memory interface for areas 2 to 5 and area 0.

BCRH is initialized to H'D0 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Idle Cycle Insert 1 (ICIS1): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read cycles are performed in different areas.

Bit 7 ICIS1	Description
0	Idle cycle not inserted in case of successive external read cycles in different areas.
1	Idle cycle inserted in case of successive external read cycles in different areas. (Initial value)

Bit 6—Idle Cycle Insert 0 (ICIS0): Selects whether or not one idle cycle state is to be inserted between bus cycles when successive external read and external write cycles are performed.

Bit 6 ICIS0	Description
0	Idle cycle not inserted in case of successive external read and external write cycles.
1	Idle cycle inserted in case of successive external read and external write cycles. (Initial value)

Bit 5—Burst ROM Enable (BRSTRM): Selects whether area 0 is used as a burst ROM interface area.

Bit 5 BRSTRM	Description		
0	Area 0 is basic bus interface area	(Initial value)	
1	Area 0 is burst ROM interface area		

Bit 4—Burst Cycle Select 1 (BRSTS1): Selects the number of burst cycles for the burst ROM interface.

Bit 4 BRSTS1	Description	
0	Burst cycle comprises 1 state	
1	Burst cycle comprises 2 states	(Initial value)

Bit 3—Burst Cycle Select 0 (BRSTS0): Selects the number of words that can be accessed in a burst access on the burst ROM interface.

Bit 3 BRSTS0	Description	
0	Max. 4 words in burst access	(Initial value)
1	Max. 8 words in burst access	

Bits 2 to 0—RAM Type Select (RMTS2 to RMTS0): These bits select the memory interface for areas 2 to 5 in advanced mode.

When DRAM space is selected, the relevant area is designated as a DRAM interface area.

Bit 2	Bit 1	Bit 0 RMTS0	Description			
RMTS2	RMTS1		Area 5	Area 4	Area 3	Area 2
0	0	0	Normal space	Normal space	Normal space	Normal space
1 Norr		Normal space	Normal space	Normal space	DRAM space	
	1	0	Normal space	Normal space	DRAM space	DRAM space
		1	DRAM space	DRAM space	DRAM space	DRAM space
1	—	_	_	_	_	—

The $\overline{\text{LCAS}}$ pin is used for the $\overline{\text{LCAS}}$ signal on the 2-CAS DRAM interface. If it is wished to use $\overline{\text{BREQO}}$ output when using the $\overline{\text{LCAS}}$ signal, it is possible to switch to the P53 pin by means of the BREQOPS bit in PFCR2. For details, see section 5.6, Port 5 and section 5.16, Port F.

4.2.5 Bus Control Register L (BCRL)

Bit	:	7	6	5	4	3	2	1	0
		BRLE	BREQOE	EAE	—	DDS	—	WDBE	WAITE
Initial va	alue :	0	0	1	1	1	1	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

BCRL is an 8-bit readable/writable register that performs selection of the external bus-released state protocol, selection of the area partition unit, enabling or disabling of the write data buffer function, and enabling or disabling of \overline{WAIT} pin input.

BCRL is initialized to H'3C by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7 BRLE	Description
0	External bus release disabled. BREQ, BACK, and BREQO pins can be used as I/O ports (Initial value)
1	External bus release enabled

Bit 6—BREQO Pin Enable (BREQOE): Outputs a signal that requests the external bus master to drop the bus request signal (\overline{BREQ}) in the external bus-released state, when an internal bus master performs an external space access, or when a refresh request is generated.

Bit 6 BREQOE	Description	
0	BREQO output disabled. BREQO pin can be used as I/O port	(Initial value)
1	BREQO output enabled	

Bit 5—External Address Enable (EAE): Designates addresses H'010000 to H'03FFFF*² as either internal or external addresses.

Bit 5	Description		
EAE	H8S/2339, H8S/2338	H8S/2337	H8S/2332
0	On-chip ROM	Addresses H'010000 to H'01FFFF are on-chip ROM or addresses H'020000 to H'03FFFF are reserved area*1	Reserved area* ¹
1	Addresses H'010000 to or reserved area*1 in s	H'03FFFF are external addresses in ex ingle-chip mode	ternal expanded mode
Notes:	1. Do not access a reser	ved area	

2. Addresses H'010000 to H'05FFFF in the H8S/2339.

Bit 4—Reserved

Bit 3—DACK Timing Select (DDS): Selects the DMAC single address transfer bus timing for the DRAM interface.

Bit 3 DDS	Description	
0	When DMAC single address transfer is performed in DRAM space, f always executed. DACK signal goes low from Tr or T1 cycle	ull access is
1	Burst access is possible when DMAC single address transfer is performed space. DACK signal goes low from Tc1 or T2 cycle	ormed in DRAM (Initial value)

Bit 2—Reserved

Bit 1—Write Data Buffer Enable (WDBE): Selects whether or not the write buffer function is used for an external write cycle or DMAC single address cycle.

Bit 1 WDBE	Description	
0	Write data buffer function not used	(Initial value)
1	Write data buffer function used	

Bit 0—WAIT Pin Enable (WAITE): Selects enabling or disabling of wait input by the WAIT pin.

Bit 0 WAITE	Description	
0	Wait input by $\overline{\text{WAIT}}$ pin disabled. $\overline{\text{WAIT}}$ pin can be used as I/O port	(Initial value)
1	Wait input by \overline{WAIT} pin enabled	

4.2.6 Memory Control Register (MCR)

Bit	:	7	6	5	4	3	2	1	0
		TPC	BE	RCDM	—	MXC1	MXC0	RLW1	RLW0
Initial value :		0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MCR is an 8-bit readable/writable register that selects the DRAM strobe control method, number of precharge cycles, access mode, address multiplexing shift size, and the number of wait states inserted during refreshing, when areas 2 to 5 are designated as DRAM interface areas.

MCR is initialized to H'00 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—TP Cycle Control (TPC): Selects whether a 1-state or 2-state precharge cycle (T_P) is to be used when areas 2 to 5 designated as DRAM space are accessed.

Bit 7 TPC	Description	
0	1-state precharge cycle is inserted	(Initial value)
1	2-state precharge cycle is inserted	

Bit 6—Burst Access Enable (BE): Selects enabling or disabling of burst access to areas 2 to 5 designated as DRAM space. DRAM space burst access is performed in fast page mode.

Bit 6 BE	Description	
0	Burst disabled (always full access)	(Initial value)
1	DRAM space access performed in fast page mode	

Bit 5—RAS Down Mode (RCDM): When areas 2 to 5 are designated as DRAM space and access to DRAM is interrupted, RCDM selects whether the \overline{RAS} signal is held low while waiting for the next DRAM access (RAS down mode), or is driven high again (RAS up mode).

Bit 5 RCDM	Description	
0	RAS up mode selected for DRAM interface	(Initial value)
1	RAS down mode selected for DRAM interface	

Bit 4—Reserved

Bits 3 and 2—Multiplex Shift Count 1 and 0 (MXC1, MXC0): These bits select the size of the shift toward the lower half of the row address in row address/column address multiplexing for the DRAM interface. In burst operation on the DRAM interface, these bits also select the row address bits to be used for comparison.

Bit 3 MXC1	Bit 2 MXC0	Description
0	0	8-bit shift (Initial value)
		 When 8-bit access space is designated: Row address bits A₂₃ to A₈ used for comparison
		 When 16-bit access space is designated: Row address bits A₂₃ to A₉ used for comparison
	1	9-bit shift
		- When 8-bit access space is designated: Row address bits $A_{_{23}}$ to $A_{_9}$ used for comparison
		 When 16-bit access space is designated: Row address bits A₂₃ to A₁₀ used for comparison
1	0	10-bit shift
		 When 8-bit access space is designated: Row address bits A₂₃ to A₁₀ used for comparison
		 When 16-bit access space is designated: Row address bits A₂₃ to A₁₁ used for comparison
	1	_

Bits 1 and 0—Refresh Cycle Wait Control 1 and 0 (RLW1, RLW0): These bits select the number of wait states to be inserted in a DRAM interface CAS-before-RAS refresh cycle. This setting is used for all areas designated as DRAM space. Wait input by the WAIT pin is disabled.

Bit 1 RLW1	Bit 0 RLW0	Description	
0	0	No wait state inserted	(Initial value)
	1	1 wait state inserted	
1	0	2 wait states inserted	
	1	3 wait states inserted	

4.2.7 DRAM Control Register (DRAMCR)

Bit	:	7	6	5	4	3	2	1	0
		RFSHE	RCW	RMODE	CMF	CMIE	CKS2	CKS1	CKS0
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

DRAMCR is an 8-bit readable/writable register that selects the DRAM refresh mode and refresh counter clock and controls the refresh timer.

DRAMCR is initialized to H'00 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Refresh Control (RFSHE): Selects whether or not refresh control is performed. When refresh control is not performed, the refresh timer can be used as an interval timer.

Bit 7 RFSHE	Description	
0	Refresh control is not performed	(Initial value)
1	Refresh control is performed	

Bit 6—RAS-CAS Wait (RCW): Controls wait state insertion in DRAM interface CAS-before-RAS refreshing.

Bit 6 RCW	Description	
0	Wait state insertion in CAS-before-RAS refreshing disabled	
	RAS falls in Tr cycle	(Initial value)
1	One wait state inserted in CAS-before-RAS refreshing	
	RAS falls in Tc1 cycle	

Bit 5—Refresh Mode (RMODE): Selects whether self-refreshing is performed in software standby mode.

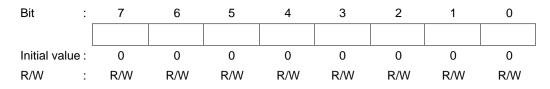
Bit 5		
RMODE	Description	
0	Self-refreshing is not performed in software standby mode	(Initial value)
1	Self-refreshing is performed in software standby mode	

Bit 4—Compare Match Flag (CMF): Status flag that indicates a match between the values of RTCNT and RTCOR.

When refresh control is performed (RFSHE = 1), 1 should be written to the CMF bit when writing to DRAMCR.

Bit 4 CMF	Description	
0	[Clearing condition]	
	When 0 is written to CMF after reading CMF = 1	(Initial value)
1	[Setting condition]	
	When RTCNT = RTCOR	

Bit 3—Compare Match Interrupt Enable (CMIE): Enables or disables interrupt requests (CMI) by the CMF flag when the CMF flag in DRAMCR is set to 1.


When refresh control is performed (RFSHE = 1), the CMIE bit is always cleared to 0.

Bit 3 CMIE	Description	
0	Interrupt request (CMI) by CMF flag disabled	(Initial value)
1	Interrupt request (CMI) by CMF flag enabled	

Bits 2 to 0—Refresh Counter Clock Select (CKS2 to CKS0): These bits select the clock to be input to RTCNT from among seven clocks obtained by dividing the system clock (\emptyset). When the input clock is selected with bits CKS2 to CKS0, RTCNT begins counting up.

Bit 2 CKS2	Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	0	Count operation disabled	(Initial value)
		1	Count uses ø/2	
	1	0	Count uses ø/8	
		1	Count uses Ø/32	
1	0	0	Count uses ø/128	
		1	Count uses ø/512	
	1	0	Count uses ø/2048	
		1	Count uses ø/4096	

4.2.8 Refresh Timer Counter (RTCNT)

RTCNT is an 8-bit readable/writable up-counter.

RTCNT counts up using the internal clock selected by bits CKS2 to CKS0 in DRAMCR.

When RTCNT matches RTCOR (compare match), the CMF flag in DRAMCR is set to 1 and RTCNT is cleared to H'00. If the RFSHE bit in DRAMCR is set to 1 at this time, a refresh cycle is started. Also, if the CMIE bit in DRAMCR is set to 1, a compare match interrupt (CMI) is generated.

RTCNT is initialized to H'00 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

4.2.9 Refresh Time Control Register (RTCOR)

Bit	:	7	6	5	4	3	2	1	0
Initial va	alue :	1	1	1	1	1	1	1	1
R/W	:	R/W							

RTCOR is an 8-bit readable/writable register that sets the period for compare match operations with RTCNT.

The values of RTCOR and RTCNT are constantly compared, and if they match, the CMF flag in DRAMCR is set to 1 and RTCNT is cleared to H'00.

RTCOR is initialized to H'FF by a reset, and in hardware standby mode. It is not initialized in software standby mode.

4.3 Overview of Bus Control

4.3.1 Area Partitioning

In advanced mode, the bus controller partitions the 16-Mbyte address space into eight areas, 0 to 7, in 2-Mbyte units, and performs bus control for external space in area units. Figure 4.2 shows an outline of the memory map.

Chip select signals (\overline{CS}_0 to \overline{CS}_7) can be output for each area.

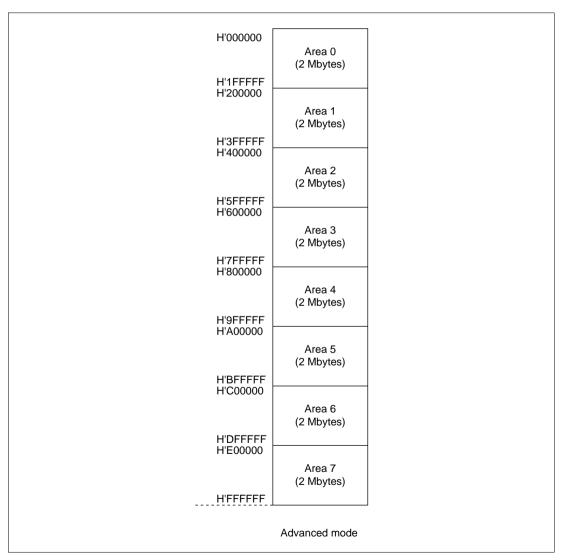


Figure 4.2 Area Partitioning

4.3.2 Bus Specifications

The external space bus specifications consist of three elements: (1) bus width, (2) number of access states, and (3) number of program wait states.

The bus width and number of access states for on-chip memory and internal I/O registers are fixed, and are not affected by the bus controller.

Bus Width: A bus width of 8 or 16 bits can be selected with ABWCR. An area for which an 8-bit bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is selected functions as a16-bit access space.

If all areas are designated for 8-bit access, 8-bit bus mode is set; if any area is designated for 16-bit access, 16-bit bus mode is always set. When the burst ROM interface is selected, 16-bit bus mode is always set.

Number of Access States: Two or three access states can be selected with ASTCR. An area for which 2-state access is selected functions as a 2-state access space, and an area for which 3-state access is selected functions as a 3-state access space.

With the DRAM interface and burst ROM interface, the number of access states may be determined without regard to ASTCR.

When 2-state access space is designated, wait insertion is disabled.

Number of Program Wait States: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and WCRL. From 0 to 3 program wait states can be selected.

Table 4.3 shows the bus specifications for each basic bus interface area.

ABWCR	ASTCR	WCF	RH, WCRL	Bus Specifications (Basic Bus Interface)								
ABWn	ASTn	Wn1	Wn0	Bus Width	Access States	Program Wait States						
0	0	—		16	2	0						
	1	0	0		3	0						
			1	-		1						
		1	0	-		2						
			1			3						
1	0	—	—	8	2	0						
	1	0	0	-	3	0						
			1	-		1						
		1	0	-		2						
			1	-		3						

 Table 4.3
 Bus Specifications for Each Area (Basic Bus Interface)

4.3.3 Memory Interfaces

The memory interfaces of the H8S/2339 and H8S/2338 Series comprise a basic bus interface that allows direct connection of ROM, SRAM, and so on; a DRAM interface that allows direct connection of DRAM; and a burst ROM interface that allows direct connection of burst ROM. The interface can be selected independently for each area.

An area for which the basic bus interface is designated functions as normal space, an area for which the DRAM interface is designated functions as DRAM space, and an area for which the burst ROM interface is designated functions as burst ROM space.

4.3.4 Advanced Mode

The initial state of each area is basic bus interface, 3-state access space. The initial bus width is selected according to the operating mode. The bus specifications described here cover basic items only, and the sections on each memory interface (4.4, 4.5, and 4.7) should be referred to for further details.

Area 0: Area 0 includes on-chip ROM, and in expanded mode with on-chip ROM disabled, all of area 0 is external space. In expanded mode with on-chip ROM enabled, the space excluding on-chip ROM is external space.

When area 0 external space is accessed, the \overline{CS}_0 signal can be output.

Either basic bus interface or burst ROM interface can be selected for area 0.

Areas 1 and 6: In external expanded mode, all of area 1 and area 6 is external space.

When area 1 and 6 external space is accessed, the \overline{CS}_1 and \overline{CS}_6 pin signals can be output, respectively.

Only the basic bus interface can be used for areas 1 and 6.

Areas 2 to 5: In external expanded mode, areas 2 to 5 are all external space.

When area 2 to 5 external space is accessed, signals \overline{CS}_2 to \overline{CS}_5 can be output.

Basic bus interface or DRAM interface can be selected for areas 2 to 5. With the DRAM interface, signals \overline{CS}_2 to \overline{CS}_5 are used as \overline{RAS} signals.

Area 7: Area 7 includes the on-chip RAM and internal/O registers. In external expanded mode, the space excluding the on-chip RAM and internal/O registers is external space. The on-chip RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1; when the RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding space becomes external space .

When area 7 external space is accessed, the \overline{CS}_7 signal can be output.

Only the basic bus interface can be used for the area 7 memory interface.

4.3.5 Chip Select Signals

The chip can output chip select signals (\overline{CS}_0 to \overline{CS}_7) to areas 0 to 7, the signal being driven low when the corresponding external space area is accessed.

Figure 4.3 shows an example of \overline{CS}_n (n = 0 to 7) output timing.

Enabling or disabling of \overline{CS}_n signal output is performed by setting the data direction register (DDR) bit for the port corresponding to the particular \overline{CS}_n pin.

In expanded mode with on-chip ROM disabled, the \overline{CS}_0 pin is placed in the output state after a reset. Pins CS_1 to CS_7 are placed in the input state after a reset, and so the corresponding DDR bits should be set to 1 when outputting signals \overline{CS}_1 to \overline{CS}_7 .

In expanded mode with on-chip ROM enabled, pins \overline{CS}_0 to \overline{CS}_7 are all placed in the input state after a reset, and so the corresponding DDR bits should be set to 1 when outputting signals \overline{CS}_0 to \overline{CS}_7 .

For details, see section 5, I/O Ports.

When areas 2 to 5 are designated as DRAM space, outputs \overline{CS}_2 to \overline{CS}_5 are used as \overline{RAS} signals.

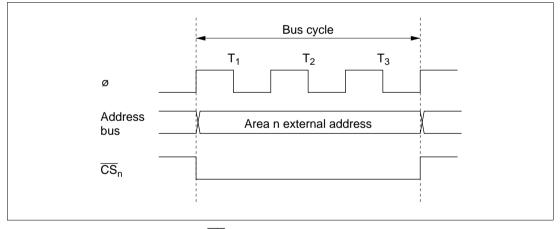


Figure 4.3 \overline{CS}_n Signal Output Timing (n = 0 to 7)

4.4 Basic Bus Interface

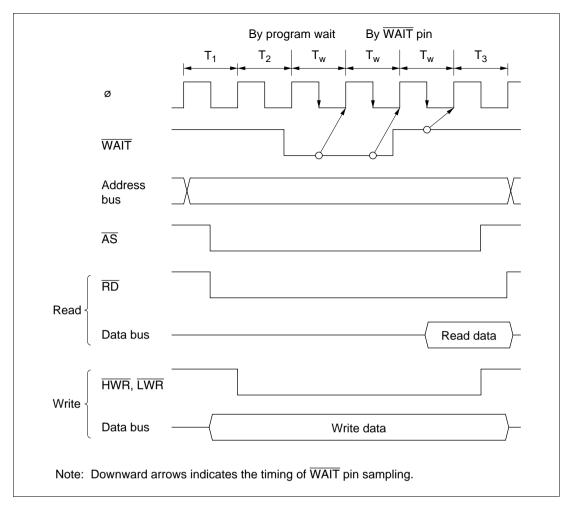
4.4.1 Overview

The basic bus interface enables direct connection of ROM, SRAM, and so on.

The bus specifications can be selected with ABWCR, ASTCR, WCRH, and WCRL. For details, see section 4.4, Basic Bus Interface, in the Hardware Manual.

4.4.2 Wait Control

When accessing external space , the chip can extend the bus cycle by inserting one or more wait states (T_w) . There are two ways of inserting wait states: program wait insertion and pin wait insertion using the \overline{WAIT} pin.


Program Wait Insertion: From 0 to 3 wait states can be inserted automatically between the T_2 state and T_3 state on an individual area basis in 3-state access space, according to the settings in WCRH and WCRL.

Pin Wait Insertion: Setting the WAITE bit in BCRL to 1 enables wait input by means of the $\overline{\text{WAIT}}$ pin. When external space is accessed in this state, a program wait is first inserted in accordance with the settings in WCRH and WCRL. If the $\overline{\text{WAIT}}$ pin is low at the falling edge of \emptyset in the last T₂ or T_w state, another T_w state is inserted. If the $\overline{\text{WAIT}}$ pin is held low, T_w states are inserted it goes high.

This is useful when inserting four or more T_w states, or when changing the number of T_w states for different external devices.

The WAITE bit setting applies to all areas. The WAITPS bit can be used to change the $\overline{\text{WAIT}}$ input pin from P8₆ to P5₃. To make this change, select the input pin with the WAITPS bit, then set the WAITE bit.

Figure 4.4 shows an example of wait state insertion timing.

Figure 4.4 Example of Wait State Insertion Timing

The settings after a reset are: 3-state access, 3 program wait state insertion, and WAIT input disabled.

4.5 DRAM Interface

4.5.1 Overview

When the chip is in advanced mode, external space areas 2 to 5 can be designated as DRAM space, and DRAM interfacing performed. With the DRAM interface, DRAM can be directly connected to the chip. A DRAM space of 2, 4, or 8 Mbytes can be set by means of bits RMTS2 to RMTS0 in BCRH. Burst operation is also possible, using fast page mode.

4.5.2 Setting DRAM Space

Areas 2 to 5 are designated as DRAM space by setting bits RMTS2 to RMTS0 in BCRH. The relation between the settings of bits RMTS2 to RMTS0 and DRAM space is shown in table 4.4. Possible DRAM space settings are: one area (area 2), two areas (areas 2 and 3), and four areas (areas 2 to 5).

Table 4.4 DRAM Space Settings by Bits RMTS2 to RMTS	Table 4.4	DRAM Space	Settings by Bits	RMTS2 to RMTS
---	-----------	-------------------	------------------	----------------------

RMTS2	RMTS1	RMTS0	Area 5	Area 4	Area 3	Area 2
0	0	1	Normal space	Normal space	Normal space	DRAM space
	1	0	Normal space	Normal space	DRAM space	DRAM space
		1	DRAM space	DRAM space	DRAM space	DRAM space

4.5.3 Address Multiplexing

With DRAM space, the row address and column address are multiplexed. In address multiplexing, the size of the shift of the row address is selected with bits MXC1 and MXC0 in MCR. Table 4.5 shows the relation between the settings of MXC1 and MXC0 and the shift size.

	MCR								A	ddre	dress Pins						
	MXC1	МХСО	Shift Size	A ₂₃ to A ₁₃	A ₁₂	A ₁₁	A ₁₀	A 9	A ₈	A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	A ₀
Row address	0	0	8 bits	A ₂₃ to A ₁₃	A ₂₀	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈
		1	9 bits	A ₂₃ to A ₁₃	A ₁₂	A ₂₀	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉
	1	0	10 bits	A ₂₃ to A ₁₃	A ₁₂	A ₁₁	A ₂₀	A ₁₉	A ₁₈	A ₁₇	A ₁₆	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀
		1	Setting pro- hibited	_	—	—	_	—	_	—	_	—	_	_	_	—	_
Column address	_	_	_	A ₂₃ to A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀

Table 4.5 Address Multiplexing Settings by Bits MXC1 and MXC0

4.5.4 Data Bus

If the bit in ABWCR corresponding to an area designated as DRAM space is set to 1, that area is designated as 8-bit DRAM space; if the bit is cleared to 0, the area is designated as 16-bit DRAM space. In 16-bit DRAM space, \times 16-bit configuration DRAM can be connected directly.

In 8-bit DRAM space the upper half of the data bus, D_{15} to D_8 , is enabled, while in 16-bit DRAM space both the upper and lower halves of the data bus, D_{15} to D_0 , are enabled.

Access sizes and data alignment are the same as for the basic bus interface. For details, see section 4.4.2, Data Size and Data Alignment, in the Hardware Manual.

4.5.5 Pins Used for DRAM Interface

Table 4.6 shows the pins used for DRAM interfacing and their functions.

Table 4.6DRAM Interface Pins

Pin	With DRAM Setting	Name	I/O	Function
HWR	WE	Write enable	Output	Write enable for DRAM space access when 2-CAS access is set
LCAS	LCAS	Lower column address strobe	Output	Lower column address strobe signal for 16-bit DRAM space access
\overline{CS}_2	RAS2	Row address strobe 2	Output	Row address strobe when area 2 is designated as DRAM space
\overline{CS}_3	RAS3	Row address strobe 3	Output	Row address strobe when area 3 is designated as DRAM space
\overline{CS}_4	RAS4	Row address strobe 4	Output	Row address strobe when area 4 is designated as DRAM space
\overline{CS}_{5}	RAS5	Row address strobe 5	Output	Row address strobe when area 5 is designated as DRAM space
CAS	UCAS	Upper column address strobe	Output	Upper column address strobe for DRAM space access
WAIT	WAIT	Wait	Input	Wait request signal
A_{12} to A_0	A_{12} to A_0	Address pins	Output	Row address/column address multiplexed output
D_{15} to D_0	D_{15} to D_0	Data pins	I/O	Data input/output pins

4.5.6 Basic Timing

Figure 4.5 shows the basic access timing for DRAM space. The basic DRAM access timing is four states. Unlike the basic bus interface, the corresponding bits in ASTCR control only enabling or disabling of wait insertion, and do not affect the number of access states. When the corresponding bit in ASTCR is cleared to 0, wait states cannot be inserted in the DRAM access cycle.

The four states of the basic timing consist of one T_p (precharge cycle) state, one T_r (row address output cycle) state, and the T_{c1} and T_{c2} (column address output cycle) states.

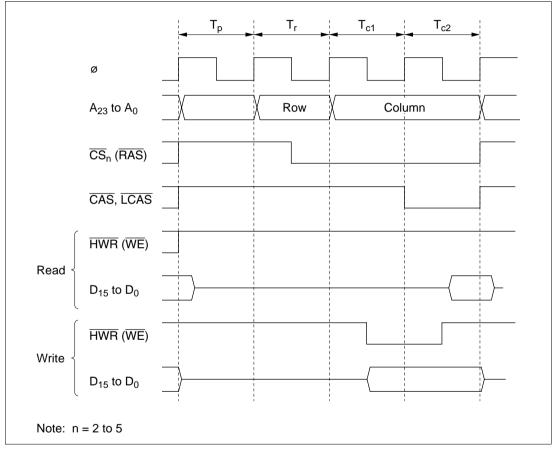


Figure 4.5 Basic Access Timing

4.5.7 Precharge State Control

When DRAM is accessed, RAS precharging time must be secured. With the H8S/2338 Series, one T_p state is always inserted when DRAM space is accessed. This can be changed to two T_p states by setting the TPC bit in MCR to 1. Set the appropriate number of T_p cycles according to the DRAM connected and the operating frequency of the chip. Figure 4.6 shows the timing when two T_p states are inserted.

 T_{p2} T_{c1} T_{c2} T_{p1} T, ø A_{23} to A_0 Row Column CS_n (RAS) CAS, LCAS HWR (WE) D_{15} to D_0 Read HWR (WE) D_{15} to D_0 Write Note: n = 2 to 5

When the TCP bit is set to 1, two T_p states are also used for refresh cycles.

Figure 4.6 Timing with Two-State Precharge Cycle

4.5.8 Wait Control

There are two ways of inserting wait states in a DRAM access cycle: program wait insertion and pin wait insertion using the \overline{WAIT} pin.

Program Wait Insertion: When the bit in ASTCR corresponding to an area designated as DRAM space is set to 1, from 0 to 3 wait states can be inserted automatically between the T_{c1} state and T_{c2} state, according to the settings of WCRH and WCRL.

Pin Wait Insertion: When the WAITE bit in BCRH is set to 1, wait input by means of the WAIT pin is enabled. When DRAM space is accessed in this state, a program wait is first inserted. If the WAIT pin is low at the falling edge of \emptyset in the last T_{c1} or T_w state, another T_w state is inserted. If the WAIT pin is held low, T_w states are inserted until it goes high.

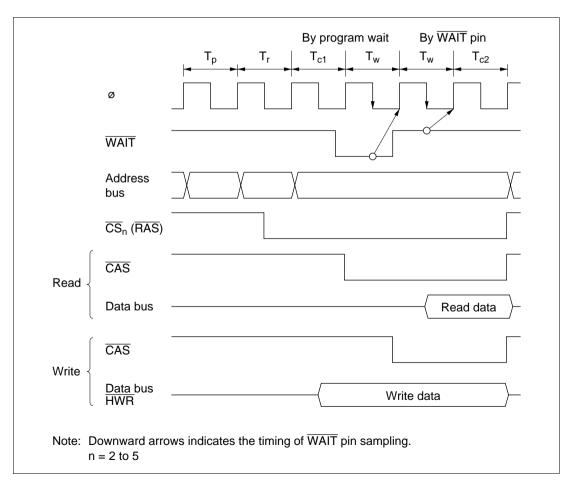


Figure 4.7 shows an example of wait state insertion timing.

Figure 4.7 Example of Wait State Insertion Timing

4.5.9 Byte Access Control

When DRAM with a $\times 16$ configuration is connected, the 2-CAS access method is used for the control signals needed for byte access.

Figure 4.8 shows the control timing for 2-CAS access, and figure 4.9 shows an example of 2-CAS DRAM connection.

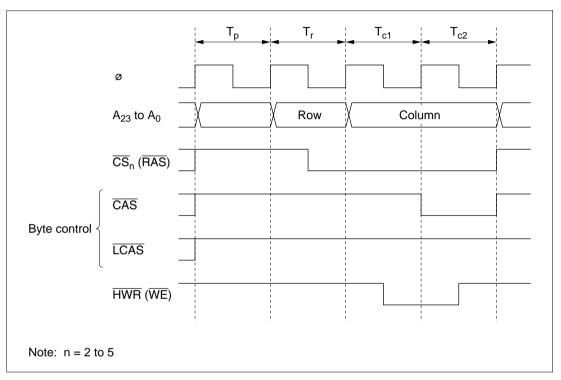


Figure 4.8 2-CAS Control Timing (Upper Byte Write Access)

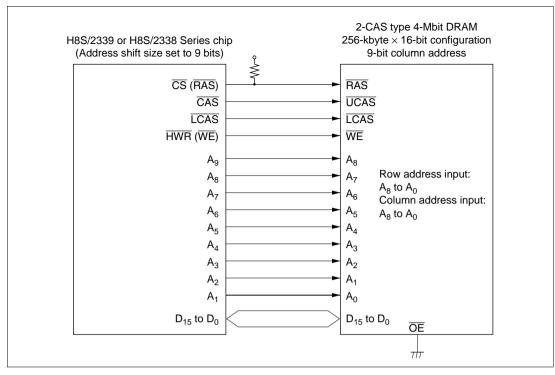
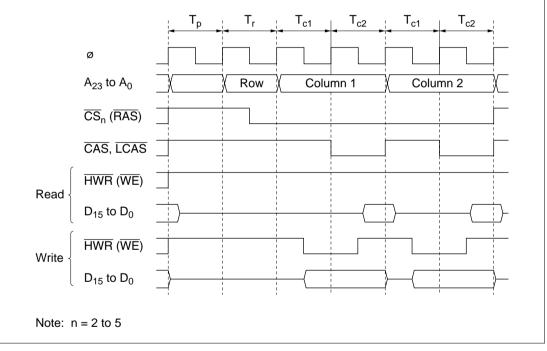



Figure 4.9 Example of 2-CAS DRAM Connection

4.5.10 Burst Operation

With DRAM, in addition to full access (normal access) in which data is accessed by outputting a row address for each access, a fast page mode is also provided which can be used when making a number of consecutive accesses to the same row address. This mode enables fast (burst) access of data by simply changing the column address after the row address has been output. Burst access can be selected by setting the BE bit in MCR to 1.

Burst Access (Fast Page Mode) Operation Timing: Figure 4.10 shows the operation timing for burst access. When there are consecutive access cycles for DRAM space, the \overline{CAS} signal and column address output cycles (two states) continue as long as the row address is the same for consecutive access cycles. The row address used for the comparison is set with bits MXC1 and MXC0 in MCR.

The bus cycle can also be extended in burst access by inserting wait states. The wait state insertion method and timing are the same as for full access. For details, see section 4.5.8, Wait Control.

RAS Down Mode and RAS Up Mode: Even when burst operation is selected, it may happen that access to DRAM space is not continuous, but is interrupted by access to another space. In this case, if the \overline{RAS} signal is held low during the access to the other space, burst operation can be resumed when the same row address in DRAM space is accessed again.

RAS down mode

To select RAS down mode, set the RCDM bit in MCR to 1. If access to DRAM space is interrupted and another space is accessed, the \overline{RAS} signal is held low during the access to the other space, and burst access is performed when the row address of the next DRAM space access is the same as the row address of the previous DRAM space access. Figure 4.11 shows an example of the timing in RAS down mode.

Note, however, that the \overline{RAS} signal will go high if a refresh operation occurs during RAS down mode.

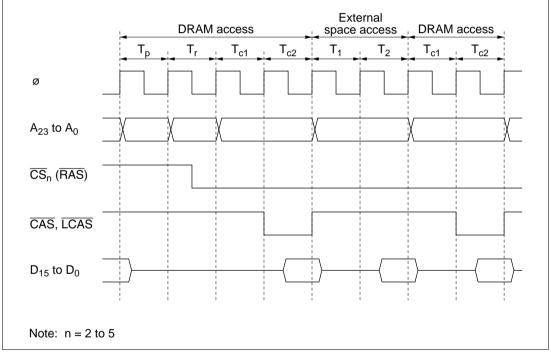
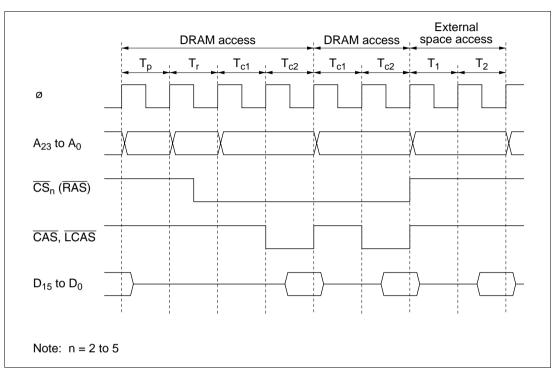



Figure 4.11 Example of Operation Timing in RAS Down Mode

• RAS up mode

To select RAS up mode, clear the RCDM bit in MCR to 0. Each time access to DRAM space is interrupted and another space is accessed, the \overline{RAS} signal goes high again. Burst operation is only performed if DRAM space is continuous. Figure 4.12 shows an example of the timing in RAS up mode. Note that in burst ROM space access, the \overline{RAS} signal does not return to the high level.

4.5.11 Refresh Control

The H8S/2339 and H8S/2338 Series are provided with a DRAM refresh control function. Either of two refreshing methods can be selected: CAS-before-RAS (CBR) refreshing, or self-refreshing.

CAS-before-RAS (CBR) Refreshing: To select CBR refreshing, set the RFSHE bit in DRAMCR to 1, and clear the RMODE bit to 0.

With CBR refreshing, RTCNT counts up using the input clock selected by bits CKS2 to CKS0 in DRAMCR, and when the count matches the value set in RTCOR (compare match), refresh control is performed. At the same time, RTCNT is reset and starts counting again from H'00. Refreshing is thus repeated at fixed intervals determined by RTCOR and bits CKS2 to CKS0. Set a value in bits CKS2 to CKS0 in RTCOR that will meet the refreshing interval specification for the DRAM used.

When bits CKS2 to CKS0 are set, RTCNT starts counting up. RTCNT and RTCOR settings should therefore be completed before setting bits CKS2 to CKS0.

Do not clear the CMF flag when refresh control is performed (RFSHE = 1).

RTCNT operation is shown in figure 4.13, compare match timing in figure 4.14, and CBR refresh timing in figure 4.15.

Another normal space access can be performed during the CBR refresh interval.

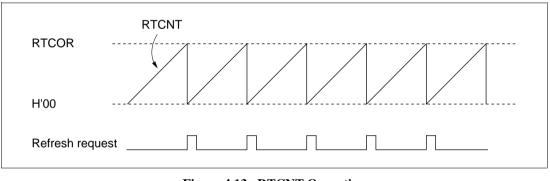


Figure 4.13 RTCNT Operation

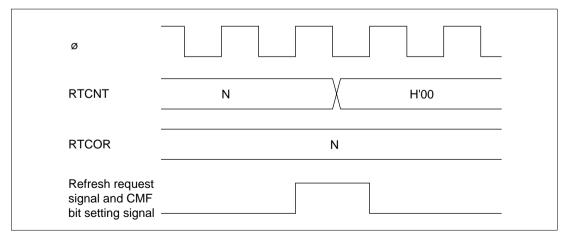
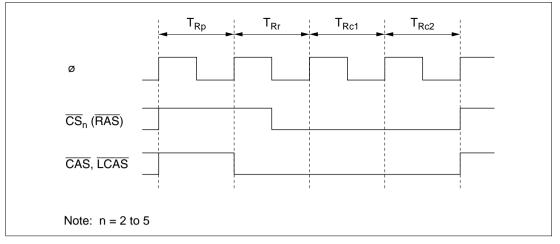



Figure 4.14 Compare Match Timing

When the RCW bit is set to 1, \overline{RAS} signal output is delayed by one cycle. Use bits RLW1 and RLW0 to adjust the width of the \overline{RAS} signal. These bits are only enabled in refresh operations.

Figure 4.16 shows the timing when the RCW bit is set to 1.

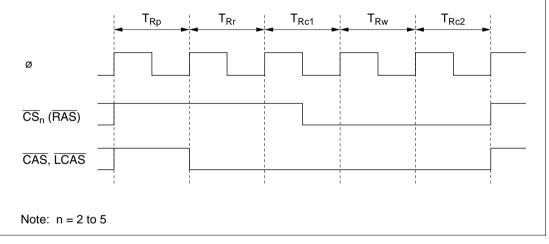


Figure 4.16 CBR Refresh Timing (When RCW = 1, RLW1 = 0, RLW0 = 1)

Self-Refreshing: A self-refresh mode (battery backup mode) is provided for DRAM as a kind of standby mode. In this mode, refresh timing and refresh addresses are generated within the DRAM.

To select self-refreshing, set the RFSHE bit and RMODE bit in DRAMCR to 1. When a SLEEP instruction is executed to enter software standby mode, the \overline{CAS} and \overline{RAS} signals are output and DRAM enters self-refresh mode, as shown in figure 4.17.

When software standby mode is exited, the RMODE bit is cleared to 0 and self-refresh mode is exited.

If a CBR refresh request occurs when making a transition to software standby mode, CBR refreshing is executed, then self-refresh mode is entered.

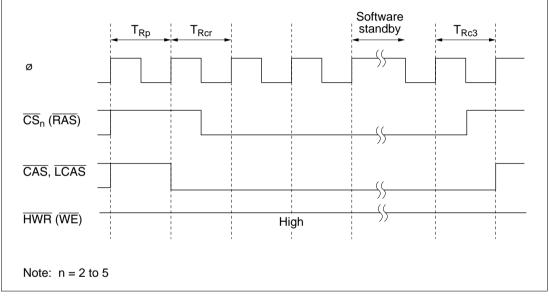


Figure 4.17 Self-Refresh Timing

4.6 DMAC Single Address Mode and DRAM Interface

When burst mode is selected with the DRAM interface, the \overline{DACK} output timing can be selected with the DDS bit. When DRAM space is accessed in DMAC single address mode at the same time, the DDS bit selects whether or not burst access is to be performed.

4.6.1 When DDS = 1

Burst access is performed by determining the address only, irrespective of the bus master. With the DRAM interface, the \overline{DACK} output goes low from the T_{c1} state.

Figure 4.18 shows the \overline{DACK} output timing for the DRAM interface when DDS = 1.

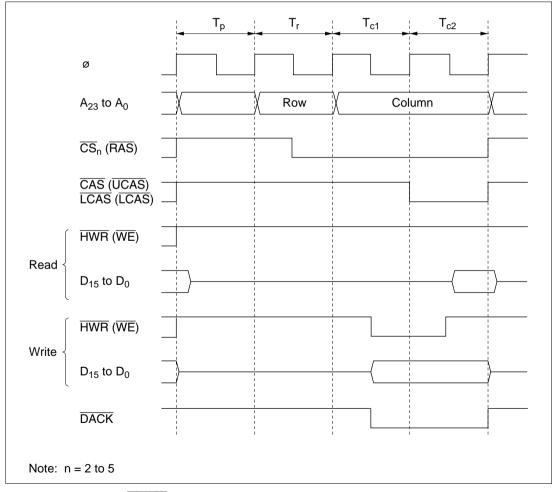
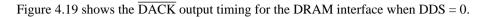



Figure 4.18 DACK Output Timing when DDS = 1 (Example of DRAM Access)

4.6.2 When DDS = 0

When DRAM space is accessed in DMAC single address mode, full access (normal access) is always performed. With the DRAM interface, the \overline{DACK} output goes low from the T_r state.

In modes other than DMAC single address mode, burst access can be used when accessing DRAM space.

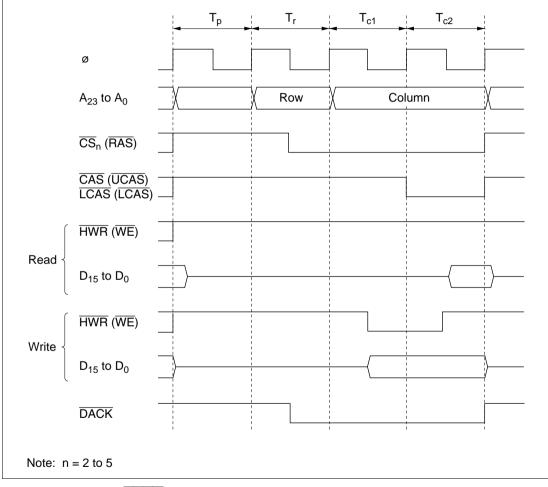


Figure 4.19 DACK Output Timing when DDS = 0 (Example of DRAM Access)

4.7 Burst ROM Interface

4.7.1 Overview

With the H8S/2339 and H8S/2338 Series, external space area 0 can be designated as burst ROM space, and burst ROM interfacing performed. The burst ROM space interface enables 16-bit ROM with burst access capability to be accessed at high speed.

Area 0 can be designated as burst ROM space by means of the BRSTRM bit in BCRH. Consecutive burst accesses of a maximum or 4 words or 8 words can be performed for CPU instruction fetches only. One or two states can be selected for burst access.

4.7.2 Basic Timing

The number of states in the initial cycle (full access) of the burst ROM interface is determined by the setting of the AST0 bit in ASTCR. When the AST0 bit is set to 1, wait state insertion is also possible. One or two states can be selected for the burst cycle, according to the setting of the BRSTS1 bit in BCRH. Wait states cannot be inserted. When area 0 is designated as burst ROM space, it functions as 16-bit access space regardless of the setting of the ABW0 bit in ABWCR.

When the BRSTS0 bit in BCRH is cleared to 0, burst access of up to 4 words is performed; when the BRSTS0 bit is set to 1, burst access of up to 8 words is performed.

The basic access timing for burst ROM space is shown in figures 4.20 (a) and (b). The timing shown in figure 4.20 (a) is for the case where the AST0 and BRSTS1 bits are both set to 1, and that in figure 4.20 (b) is for the case where both these bits are cleared to 0.

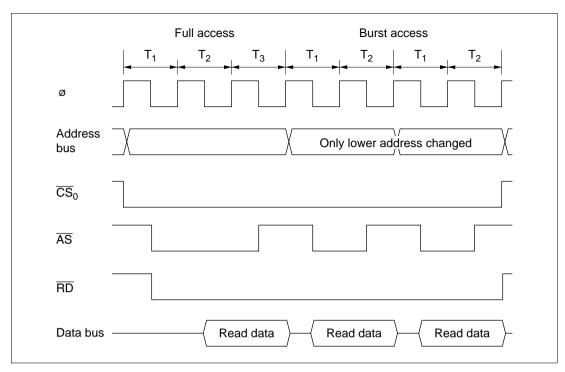


Figure 4.20 (a) Example of Burst ROM Access Timing (When AST0 = BRSTS1= 1)

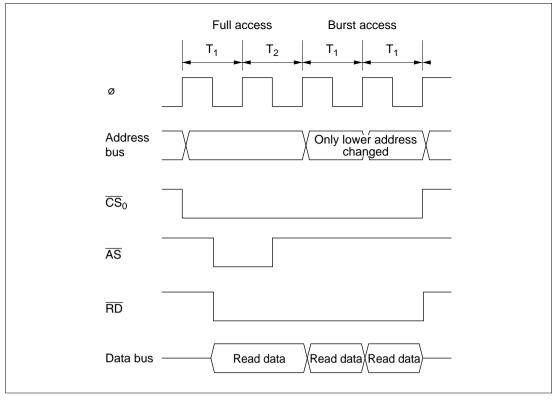


Figure 4.20 (b) Example of Burst ROM Access Timing (When AST0 = BRSTS1 = 0)

4.7.3 Wait Control

As with the basic bus interface, either program wait insertion or pin wait insertion using the \overline{WAIT} pin can be used in the initial cycle (full access) on the burst ROM interface. See section 4.4.2, Wait Control.

Wait states cannot be inserted in a burst cycle.

4.8 Idle Cycle

4.8.1 Operation

When the H8S/2339 or H8S/2338 Series chip accesses external space, it can insert a 1-state idle cycle (T_I) between bus cycles in the following two cases: (1) when read accesses in different areas occur consecutively, and (2) when a write cycle occurs immediately after a read cycle. By inserting an idle cycle it is possible, for example, to avoid data collisions between ROM, etc., with a long output floating time, and high-speed memory, I/O interfaces, and so on.

Consecutive Reads in Different Areas: If consecutive reads in different areas occur while the ICIS1 bit in BCRH is set to 1, an idle cycle is inserted at the start of the second read cycle. This is enabled in advanced mode.

Figure 4.21 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a read cycle for SRAM, each being located in a different area. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is inserted, and a data collision is prevented.

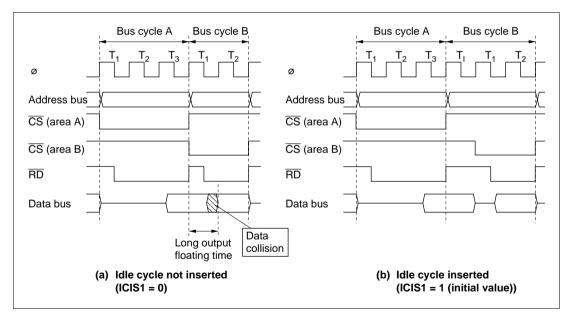


Figure 4.21 Example of Idle Cycle Operation (1)

Write after Read: If an external write occurs after an external read while the ICIS0 bit in BCRH is set to 1, an idle cycle is inserted at the start of the write cycle.

Figure 4.22 shows an example of the operation in this case. In this example, bus cycle A is a read cycle for ROM with a long output floating time, and bus cycle B is a CPU write cycle. In (a), an idle cycle is not inserted, and a collision occurs in bus cycle B between the read data from ROM and the CPU write data. In (b), an idle cycle is inserted, and a data collision is prevented.

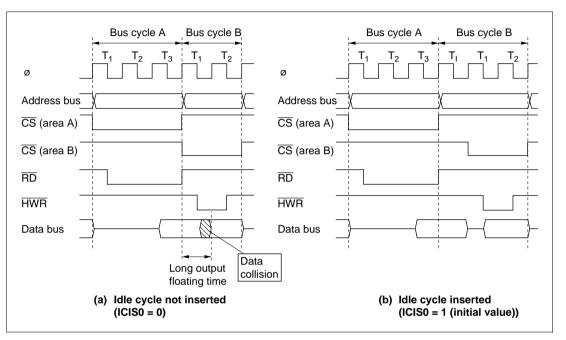


Figure 4.22 Example of Idle Cycle Operation (2)

Relationship between Chip Select (\overline{CS}) **Signal and Read** (\overline{RD}) **Signal:** Depending on the system's load conditions, the \overline{RD} signal may lag behind the \overline{CS} signal. An example is shown in figure 4.23.

In this case, with the setting for no idle cycle insertion (a), there may be a period of overlap between the bus cycle A \overline{RD} signal and the bus cycle B \overline{CS} signal.

Setting idle cycle insertion, as in (b), however, will prevent any overlap between the \overline{RD} and \overline{CS} signals.

In the initial state after reset release, idle cycle insertion (b) is set.

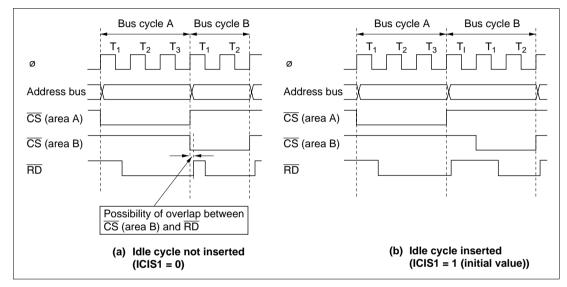
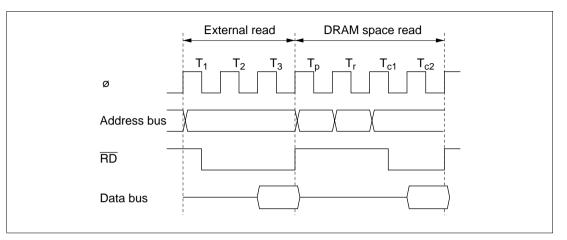



Figure 4.23 Relationship between Chip Select (\overline{CS}) and Read (\overline{RD})

Usage Notes: When DRAM space is accessed, the ICIS0 and ICIS1 bit settings are disabled. In the case of consecutive reads in different areas, for example, if the second access is a DRAM access, only a T_p cycle is inserted, and a T_1 cycle is not. The timing in this case is shown in figure 4.24. However, in burst access in RAS down mode, the settings of these bits are enabled and an idle cycle is inserted. The timing in this case is shown in figures 4.25 (a) and (b).

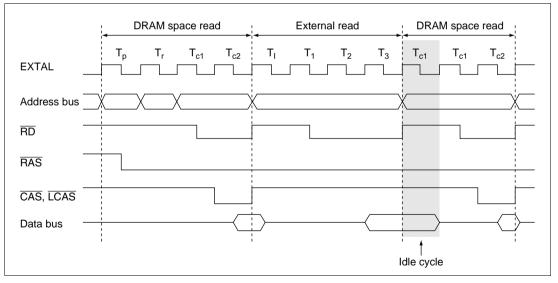
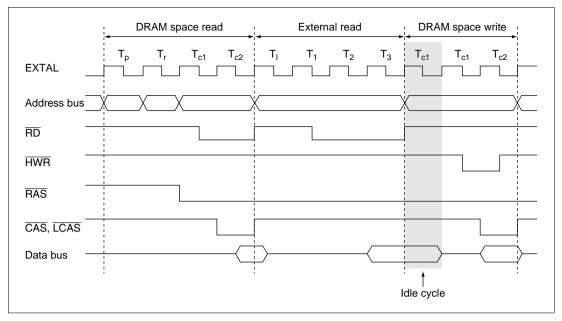



Figure 4.25 (a) Example of Idle Cycle Insertion in RAS Down Mode (ICIS1 = 1)

4.8.2 Pin States in Idle Cycle

Table 4.7 shows the pin states in an idle cycle.

Table 4.7	Pin States in Idle Cycle
-----------	--------------------------

Pin State
Contents of following bus cycle
High impedance
High*1
High

Notes: 1. Remains low in DRAM space RAS down mode or a refresh cycle.

2. n = 0 to 7

3. m = 0 or 1

4.9 Write Data Buffer Function

The H8S/2339 and H8S/2338 Series have a write data buffer function for the external data bus. Using the write data buffer function enables external writes and DMA single address mode transfers to be executed in parallel with internal accesses. The write data buffer function is made available by setting the WDBE bit in BCRL to 1.

Figure 4.26 shows an example of the timing when the write data buffer function is used. When this function is used, if an external write or DMA single address mode transfer continues for two states or longer, and there is an internal access next, an external write only is executed in the first state, but from the next state onward an internal access (on-chip memory or internal I/O register read/write) is executed in parallel with the external write rather than waiting until it ends.

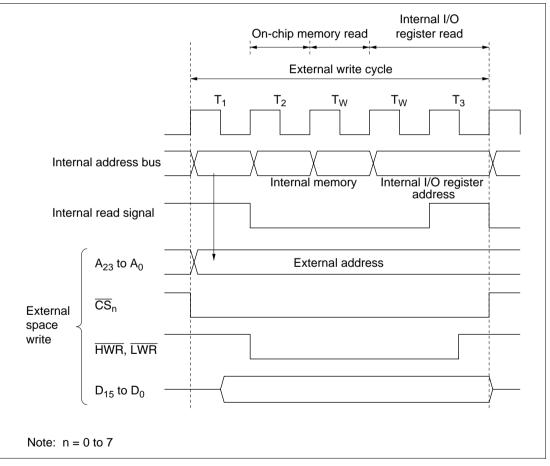


Figure 4.26 Example of Timing when Write Data Buffer Function is Used

4.10 Bus Release

4.10.1 Overview

The H8S/2339 or H8S/2338 Series chip can release the external bus in response to a bus request from an external device. In the external bus-released state, the internal bus master continues to operate as long as there is no external access.

If an internal bus master wants to make an external access in the external bus-released state, or if a refresh request is generated, it can issue a request off-chip for the bus request to be dropped.

The BREQOPS bit can be used to change the \overline{BREQO} output pin from PF₂ to P5₃.

4.10.2 Operation

In external expanded mode, the bus can be released to an external device by setting the BRLE bit in BCRL to 1. Driving the $\overline{\text{BREQ}}$ pin low issues an external bus request to the H8S/2339 or H8S/2338 Series chip. When the $\overline{\text{BREQ}}$ pin is sampled, at the prescribed timing the $\overline{\text{BACK}}$ pin is driven low, and the address bus, data bus, and bus control signals are placed in the high-impedance state, establishing the external bus-released state.

In the external bus-released state, an internal bus master can perform accesses using the internal bus. When an internal bus master wants to make an external access, it temporarily defers activation of the bus cycle, and waits for the bus request from the external bus master to be dropped. If a refresh request is generated in the external bus-released state, refresh control is deferred until the external bus master drops the bus request.

If the BREQOE bit in BCRL is set to 1, when an internal bus master wants to make an external access in the external bus-released state, or when a refresh request is generated, the \overline{BREQO} pin is driven low and a request can be made off-chip to drop the bus request.

When the $\overline{\text{BREQ}}$ pin goes high, the $\overline{\text{BACK}}$ pin is driven high at the prescribed timing and the external bus-released state is terminated.

If an external bus release request and external access occur simultaneously, the order of priority is as follows:

(High) External bus release > Internal bus master external access (Low)

If a refresh request and external bus release request occur simultaneously, the order of priority is as follows:

(High) Refresh > External bus release (Low)

As a refresh and an external access by an internal bus master can be executed simultaneously, there is no relative order of priority for these two operations.

4.10.3 Pin States in External-Bus-Released State

Table 4.8 shows pin states in the external-bus-released state.

Table 4.8 Pin States in Bus-Released State

Pins	Pin State
A_{23} to A_0	High impedance
D ₁₅ to D ₀	High impedance
$\overline{\text{CS}}_{n}^{*^{1}}$	High impedance
CAS	High impedance
ĀS	High impedance
RD	High impedance
HWR	High impedance
LWR	High impedance
DACK _m * ²	High
Notes: $1 n = 0$ to 7	

Notes: 1. n = 0 to 7

2. m = 0 or 1

4.10.4 Transition Timing

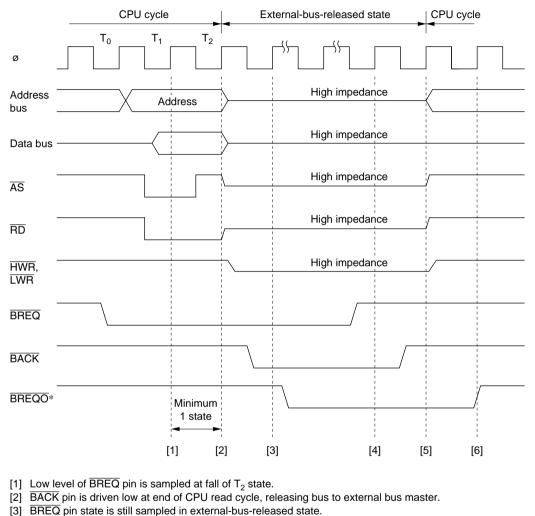


Figure 4.27 shows the timing for transition to the bus-released state.

- [4] High level of BREQ pin is sampled.
- [5] BACK pin is driven high, ending bus release cycle.
- [6] BREQO signal goes high 1.5 clocks after rise of BACK signal.

Note: * Output only when BREQOE = 1.

Figure 4.27 Bus-Released State Transition Timing

4.10.5 Usage Note

If MSTPCR is set to H'FFFF or H'EFFF and a transition is made to sleep mode, the external bus release function will halt. Therefore, these settings should not be used.

4.11 Bus Arbitration

4.11.1 Overview

The H8S/2339 and H8S/2338 Series have a bus arbiter that arbitrates bus master operations.

There are three bus masters, the CPU, DTC, and DMAC, which perform read/write operations when they have possession of the bus. Each bus master requests the bus by means of a bus request signal. The bus arbiter determines priorities at the prescribed timing, and permits use of the bus by means of a bus request acknowledge signal. The selected bus master then takes possession of the bus and begins its operation.

4.11.2 Operation

The bus arbiter monitors the bus masters' bus request signals, and if the bus is requested, sends a bus request acknowledge signal to the bus master making the request. If there are bus requests from more than one bus master, the bus request acknowledge signal is sent to the one with the highest priority. When a bus master receives the bus request acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:

```
(High) DMAC > DTC > CPU (Low)
```

An external access by an internal bus master, external bus release, and a refresh can be executed in parallel.

If an external bus release request, a refresh request, and an external access by an internal bus master occur simultaneously, the order of priority is as follows:

(High) Refresh > External bus release (Low)

(High) External bus release > Internal bus master external access (Low)

As a refresh and an external access by an internal bus master can be executed simultaneously, there is no relative order of priority for these two operations.

4.11.3 Bus Transfer Timing

Even if a bus request is received from a bus master with a higher priority than that of the bus master that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. There are specific times at which each bus master can relinquish the bus.

CPU: The CPU is the lowest-priority bus master, and if a bus request is received from the DTC or DMAC, the bus arbiter transfers the bus to the bus master that issued the request. The timing for transfer of the bus is as follows:

- The bus is transferred at a break between bus cycles. However, if a bus cycle is executed in discrete operations, as in the case of a longword-size access, the bus is not transferred between the component operations. For details of times when the bus is not transferred, see appendix A.5, Bus States During Instruction Execution, in the Hardware Manual.
- If the CPU is in sleep mode, it transfers the bus immediately.

DTC: The DTC sends the bus arbiter a request for the bus when an activation request is generated.

The DTC can release the bus after a vector read, a register information read (3 states), a single data transfer, or a register information write (3 states). It does not release the bus during a register information read (3 states), a single data transfer, or a register information write (3 states).

DMAC: The DMAC sends the bus arbiter a request for the bus when an activation request is generated.

In the case of an external request in short address mode or normal mode, and in cycle steal mode, the DMAC releases the bus after a single transfer.

In block transfer mode, it releases the bus after transfer of one block, and in burst mode, after completion of the transfer.

4.11.4 Note on Use of External Bus Release

External bus release can be performed on completion of an external bus cycle. The $\overline{\text{RD}}$ signal and the DRAM interface $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ signals remain low until the end of the external bus cycle. Therefore, when external bus release is performed, the $\overline{\text{RD}}$, $\overline{\text{RAS}}$, and $\overline{\text{CAS}}$ signals may change from the low level to the high-impedance state.

4.12 Bus Controller Operation in a Reset

In a reset, the chip, including the bus controller, enters the reset state immediately, and any executing bus cycle is aborted.

Section 5 I/O Ports

5.1 Overview

The H8S/2339 and H8S/2338 Series have 15 I/O ports (ports 1 to 3, $P5_0$ to $P5_3$, 6 to 9, and A to G), and two input-only ports (port 4 and $P5_4$ to $P5_7$).

Table 5.1 summarizes the port functions. The pins of each port also have other functions.

Each port includes a data direction register (DDR) that controls input/output (not provided for the input-only ports), a data register (DR) that stores output data, and a port register (PORT) used to read the pin states.

Ports A to E have a built-in MOS pull-up function, and in addition to DR and DDR, have a MOS input pull-up control register (PCR) to control the on/off state of MOS input pull-up.

Port 3 and port A include an open drain control register (ODR) that controls the on/off state of the output buffer PMOS.

Ports 1 and A to F can drive a single TTL load and 50 pF capacitive load, and ports 2, 3, 5 to 9, and G can drive a single TTL load and 30 pF capacitive load.

Ports 1, 2, 7, and 9, and pins 5_0 to 5_3 (only when used as IRQ inputs), 6_4 to 6_7 , and A_4 to A_7 , are Schmitt-triggered inputs.

Port	Description	Pins	Mode 4*1	Mode 5 ^{*1}	Mode 6	Mode 7		
Port 1	 8-bit I/O port Schmitt- triggered input 	P1 ₇ /PO ₁₅ /TIOCB ₂ /TCLKD P1 ₆ /PO ₁₄ /TIOCA ₂ P1 ₅ /PO ₁₃ /TIOCB ₁ /TCLKC P14/PO12/TIOCA ₁ P1 ₃ /PO ₁₁ /TIOCD ₀ /TCLKB P1 ₂ /PO ₁₀ /TIOCC ₀ /TCLKA P1 ₁ /PO ₉ /TIOCB ₀ P1 ₀ /PO ₈ /TIOCA ₀	8-bit I/O port also functioning as TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA ₀ , TIOCB ₀ , TIOCC ₀ , TIOCD ₀ , TIOCA ₁ , TIOCB ₁ , TIOCA ₂ , TIOCB ₂) and PPG output pins (PO ₁₅ to PO ₈)					
Port 2	 8-bit I/O port Schmitt- triggered input 	$\begin{array}{c} P2_{7}/PO_{7}/TIOCB_{5} \\ P2_{6}/PO_{6}/TIOCA_{5} \\ P2_{5}/PO_{5}/TIOCB_{4} \\ P2_{4}/PO_{4}/TIOCA_{4} \\ P2_{3}/PO_{3}/TIOCD_{3} \\ P2_{2}/PO_{2}/TIOCC_{3} \\ P2_{1}/PO_{1}/TIOCB_{3} \\ P2_{0}/PO_{0}/TIOCA_{3} \end{array}$	8-bit I/O port als TIOCB ₃ , TIOCC TIOCB ₅) and PF	3, TIOCD ₃ , TIC	DCA ₄ , TIOCB ₄ ,			
Port 3	 6-bit I/O port Open-drain output capability 	P3 ₅ /SCK ₁ P3 ₄ /SCK ₀ P3 ₃ /RxD ₁ P3 ₂ /RxD ₀ P3 ₁ /TxD ₁ P3 ₀ /TxD ₀	6-bit I/O port als pins (TxD ₀ , RxD			l 0 and 1) I/O		
Port 4	• 8-bit input port	$P4_{7}/AN_{7}/DA_{1}$ $P4_{6}/AN_{6}/DA_{0}$ $P4_{5}/AN_{5}$ $P4_{4}/AN_{4}$ $P4_{3}/AN_{3}$ $P4_{2}/AN_{2}$ $P4_{1}/AN_{1}$ $P4_{0}/AN_{0}$	8-bit input port a inputs (AN ₇ to A and DA ₀)					

Table 5.1Port Functions

Port	Description	Pins	Mode 4*1	Mode 5 ^{*1}	Mode 6	Mode 7
Port 5	 4-bit I/O port 4-bit input port	P5 ₇ /AN ₁₅ /DA ₃ P5 ₆ /AN ₁₄ /DA ₂ P5 ₅ /AN ₁₃ P5 ₄ /AN ₁₂	4-bit input port a converter analo D/A converter a	g inputs (AN ₁₅ to	o AN ₁₂) and	
	 Schmitt- triggered input (IRQ input only) 	P5 ₃ /ADTRG/IRQ ₇ /WAIT/ BREQO	I/O port also fur input pin (\overline{ADTR}) (\overline{IRQ}_7) when IRO when WAITE = DDR =0, and \overline{BI} WAITE =0, BRE	A/D converter		
		$P5_{2}/SCK_{2}/\overline{IRQ}_{6}$ $P5_{1}/RxD_{2}/\overline{IRQ}_{5}$ $P5_{0}/TxD_{2}/\overline{IRQ}_{4}$	I/O port also fun RxD ₂ , SCK ₂), au when IRQPAS =	nd as interrupt i	·	
Port 6	 8-bit I/O port Schmitt- triggered input (P6₄ to P6₇) 	$\begin{array}{l} P6_7/\overline{CS}_7 \\ P6_6/\overline{CS}_6 \\ P6_5/\overline{IRQ}_1 \\ P6_4/\overline{IRQ}_0 \\ P6_3 \\ P6_2 \\ P6_1/\overline{CS}_5 \\ P6_0/\overline{CS}_4 \end{array}$	8-bit I/O port als output pins (CS pins (IRQ ₀ and	$_{4}$ to \overline{CS}_{7}), and in		8-bit I/O port also function- ing as inter- rupt input pins $(\overline{IRQ}_0 \text{ and } \overline{IRQ}_1)$
Port 7	 6-bit I/O port Schmitt- triggered input 	P7 ₅ /TMO ₁ P7 ₄ /TMO ₀ P7 ₃ /TMCI ₁ P7 ₂ /TMCI ₀ P7 ₁ /TMRI ₁ P7 ₀ /TMRI ₀	6-bit I/O port als 1) I/O pins (TMF			
Port 8	• 7-bit I/O port	$\begin{array}{l} P8_{6}/\overline{WAIT}\\ P8_{5}/\overline{DACK}_{1}\\ P8_{4}/\overline{DACK}_{0}\\ P8_{3}/\overline{TEND}_{1}\\ P8_{2}/\overline{TEND}_{0}\\ P8_{1}/\overline{DREQ}_{1}\\ P8_{0}/\overline{DREQ}_{0} \end{array}$	7-bit I/O port als (DREQ ₀ , TEND, WAIT input whe	, DACK ₀ , DREC	$\overline{Q}_1, \overline{TEND}_1, \overline{DA}$	

Port	Description	Pins	Mode 4 ^{*1}	Mode 5 ^{*1}	Mode 6	Mode 7
Port 9	 6-bit I/O port Schmitt- triggered input 	$P9_{7}/\overline{IRQ}_{7}$ $P9_{6}/\overline{IRQ}_{6}$ $P9_{5}/\overline{IRQ}_{5}$ $P9_{4}/\overline{IRQ}_{4}$ $P9_{3}/\overline{IRQ}_{3}$ $P9_{2}/\overline{IRQ}_{2}$	6-bit I/O port als \overline{IRQ}_2)	so functioning	as interrupt inpu	ut pins (ÎRQ ₇ to
Port A	 8-bit I/O port Built-in MOS input pull-up Open-drain output capability 	PA ₇ /A ₂₃ PA ₆ /A ₂₂ PA ₅ /A ₂₁	When DDR = 0 input port When DDR = 1 A21E = 1: addre When DDR = 1 A21E = 0: DR v	and A23E to ess output and A23E to	When DDR = 0 (after reset): input port When DDR = 1 and A23E to A20E = 1: address output	I/O ports
	 Schmitt- triggered input (PA₄ to PA₇) 	PA ₄ /A ₂₀	Address output functioning as D output		When DDR = 1 and A23E to A20E = 0: DR value output	
		PA_3/A_{19} to PA_0/A_{16}	Address output		When DDR = 0 (after reset): input ports When DDR = 1: address output	I/O ports
Port B	 8-bit I/O port Built-in MOS input pull-up 	PB_7/A_{15} to PB_0/A_8	Address output		When DDR = 0 (after reset): input port When DDR = 1: address output	I/O port
Port C	 8-bit I/O port Built-in MOS input pull-up 	PC_7/A_7 to PC_0/A_0	Address output		When DDR = 0 (after reset): input port When DDR = 1: address output	I/O port
Port D	 8-bit I/O port Built-in MOS input pull-up 	PD_7/D_{15} to PD_0/D_8	Data bus input/o	output		I/O port

Port	Description	Pins	Mode 4 ^{*1}	Mode 5*1	Mode 6	Mode 7
Port E	• 8-bit I/O	PE_7/D_7 to PE_0/D_0	I/O port			
	port • Built-in MOS input pull-up		In 16-bit bus m	ode: data bus inp	out/output	
Port F	• 8-bit I/O port	PF ₇ /ø	When DDR = 0 When DDR = 1	: input port (after reset): ø c	putput	When DDR = 0 (after reset): input port When DDR = 1: ø output
		PF ₆ /AS	When ASOD =	1: I/O port		I/O port
			When ASOD =	0: AS output		
		PF₅⁄RD PF₄∕HWR	RD, HWR outp	ut		_
		PF ₃ /LWR	When LWROD	= 1: I/O port		_
			When LWROD	= 0: LWR output	t	
		PF ₂ /LCAS/BREQO	When BREQO	E = 0 (after reset): I/O port	_
			When BREQO	E = 1 and BREQ	OPS = 0:	
				to RMTS0= B'00 pace is set: LCA		
		PF ₁ /BACK	When BRLE =	0 (after reset): I/0	D port	_
		PF ₀ /BREQ	When BRLE =	1: BREQ input, E	BACK output	
Port G	• 5-bit I/O	PG_4/\overline{CS}_0	When DDR = 0			I/O port
	port		When DDR = 1	*3: \overline{CS}_0 output		_
		PG_{3}/\overline{CS}_{1}	When CS167E	(after reset): inp = 0 and DDR = = 1 and DDR =	1: output port	
		PG_2/\overline{CS}_2	When CS25E =	(after reset): inp = 0 and DDR = 1: = 1 and DDR = 1:	output port	_
		PG_1/\overline{CS}_3	When CS25E =	(after reset): inp = 0 and DDR = 1: = 1 and DDR = 1:	output port	_
		PG ₀ /CAS	DRAM space s	et: CAS output		_
			Otherwise (afte	r reset): I/O port		

Notes: 1. Only modes 4 and 5 are provided in the ROMless version.

2. After a reset in mode 6

3. After a reset in mode 4 or 5

5.2 Port 1

5.2.1 Overview

Port 1 is an 8-bit I/O port. Port 1 pins also function as PPG output pins (PO₁₅ to PO₈) and TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA₀, TIOCB₀, TIOCC₀, TIOCD₀, TIOCA₁, TIOCB₁, TIOCA₂, and TIOCB₂) Port 1 pin functions are the same in all operating modes. Port 1 uses Schmitt-triggered input.

Figure 5.1 shows the port 1 pin configuration.

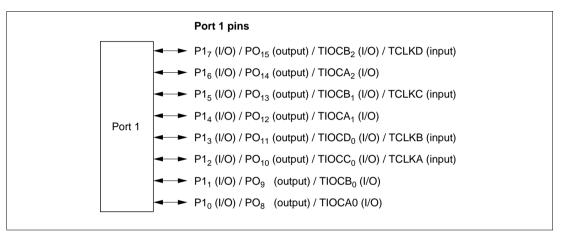


Figure 5.1 Port 1 Pin Functions

5.2.2 Register Configuration

Table 5.2 shows the port 1 register configuration.

Table 5.2Port 1 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 1 data direction register	P1DDR	W	H'00	H'FEB0
Port 1 data register	P1DR	R/W	H'00	H'FF60
Port 1 register	PORT1	R	Undefined	H'FF50

Note: * Lower 16 bits of the address.

Port 1 Data Direction Register (P1DDR)

Bit	:	7	6	5	4	3	2	1	0
		P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
Initial valu	ue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P1DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 1. P1DDR cannot be read; if it is, an undefined value will be read.

Setting a P1DDR bit to 1 makes the corresponding port 1 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P1DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 1 Data Register (P1DR)

Bit	:	7	6	5	4	3	2	1	0
		P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P1DR is an 8-bit readable/writable register that stores output data for the port 1 pins (P17 to P10).

P1DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 1 Register (PORT1)

Bit	:	7	6	5	4	3	2	1	0
		P17	P16	P15	P14	P13	P12	P11	P10
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P1₇ to P1₀.

PORT1 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 1 pins ($P1_7$ to $P1_0$) must always be performed on P1DR.

If a port 1 read is performed while P1DDR bits are set to 1, the P1DR values are read. If a port 1 read is performed while P1DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT1 contents are determined by the pin states, as P1DDR and P1DR are initialized. PORT1 retains its prior state in software standby mode.

5.2.3 Pin Functions

Port 1 pins also function as PPG output pins (PO₁₅ to PO₈) and TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA₀, TIOCB₀, TIOCC₀, TIOCD₀, TIOCA₁, TIOCB₁, TIOCA₂, and TIOCB₂) Port 1 pin functions are shown in table 5.3.

Table 5.3Port 1 Pin Functions

Pin	Selection Meth	od and Pin Functions							
P1 ₇ /PO ₁₅ / TIOCB ₂ /TCLKD	The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOB3 to IOB0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bits TPSC2 to TPSC0 in TCR0 and TCR5, bit NDER15 in NDERH, and bit P17DDR.								
	TPU Channel 2 Setting	Table Below (1)	Ta	able Below	(2)				
	P17DDR	—	0	1	1				
	NDER15	_	_	0	1				
	Pin function	TIOCB ₂ output	P1 ₇ input	P1 ₇ output	PO₁₅ output				
			TI	OCB ₂ input	*1				
		TCLKD	input *2						
	Notes: 1. TIOC	B_2 input when MD3 to MD0 = B	3'0000 or E	01xx, and	IOB3 = 1.				
 TCLKD input when the setting for either TCR0 or TCR5 is: TPS to TPSC0 = B'111. 									

TCLKD input when channels 2 and 4 are set to phase counting mode.

	-					
TPU Channel 2 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'0010	B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	—	B'xx00	Other that	an B'xx00
CCLR1, CCLR0		—	—	_	Other than B'10	B'10
Output function	_	Output compare output	—	_	PWM mode 2 output	
x: Don't care						

Selection Method and Pin Functions

P1₆/PO₁₄/ TIOCA₂

Pin

The pin function is switched as shown below according to the combination of the TPU channel 2 setting (by bits MD3 to MD0 in TMDR2, bits IOA3 to IOA0 in TIOR2, and bits CCLR1 and CCLR0 in TCR2), bit NDER14 in NDERH, and bit P16DDR.

TPU Channel 2 Setting	Table Below (1)	Table Below (2)		
P16DDR	—	0	1	1
NDER14	—	—	0	1
Pin function	TIOCA ₂ output	P1 ₆ input	P1 ₆ output	PO ₁₄ output
		TIOCA ₂ input *1		

TPU Channel 2 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0011	B'0011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR1, CCLR0			—	—	Other than B'01	B'01
Output function	—	Output compare output	_	PWM mode 1 output *2	PWM mode 2 output	—

x: Don't care

Notes: 1. TIOCA₂ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1.

2. $TIOCB_2$ output is disabled.

P1₅/PO₁₃/ TIOCB₁/TCLKC

Pin

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOB3 to IOB0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bits TPSC2 to TPSC0 in TCR0, TCR2, TCR4, and TCR5, bit NDER13 in NDERH, and bit P15DDR.

TPU Channel 1 Setting	Table Below (1)	Table Below (2)			
P15DDR	—	0	1	1	
NDER13	—	—	0	1	
Pin function	TIOCB ₁ output	P1₅ input	P1₅ output	PO ₁₃ output	
		TIOCB ₁ input *1			
	TCLKC input *2				

Notes: 1. TIOCB₁ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 to IOB0 = B'10xx.

2. TCLKC input when the setting for either TCR0 or TCR2 is: TPSC2 to TPSC0 = B'110; or when the setting for either TCR4 or TCR5 is TPSC2 to TPSC0 = B'101.

TCLKC input when channels 2 and 4 are set to phase counting mode.

TPU Channel 1 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'0010	B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	00 Other than B'xx00	
CCLR1, CCLR0			_		Other than B'10	B'10
Output function	—	Output compare output	_	_	PWM mode 2 output	—

x: Don't care

P1₄/PO₁₂/ TIOCA₁

Pin

The pin function is switched as shown below according to the combination of the TPU channel 1 setting (by bits MD3 to MD0 in TMDR1, bits IOA3 to IOA0 in TIOR1, and bits CCLR1 and CCLR0 in TCR1), bit NDER12 in NDERH, and bit P14DDR.

TPU Channel 1 Setting	Table Below (1)	Table Below (2)			
P14DDR	—	0	1	1	
NDER12	—	—	0	1	
Pin function	TIOCA ₁ output	P1₄ input	P1₄ output	PO ₁₂ output	
		TIOCA ₁ input *1			

TPU Channel 1 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Other than B'xx00	Other that	an B'xx00
CCLR1, CCLR0	_		—	_	Other than B'01	B'01
Output function		Output compare output	—	PWM mode 1 output ^{*2}	PWM mode 2 output	—

x: Don't care

- Notes: 1. TIOCA₁ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 to IOA0 = B'10xx.
 - 2. TIOCB₁ output is disabled.

Pin	Selection Method and Pin Functions
P1 ₃ /PO ₁₁ /	The pin function is switched as shown below according to the combination of
TIOCD ₀ /TCLKB	the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOD3 to IOD0
	in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in
	TCR0 to TCR2, bit NDER11 in NDERH, and bit P13DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)			
P13DDR	—	0	1	1	
NDER11	—	—	0	1	
Pin function	TIOCD₀ output	P1 ₃ input	P1 ₃ output	PO ₁₁ output	
		TIOCD ₀ input *1			
	TCLKB input *2				

Notes: 1. TIOCD₀ input when MD3 to MD0 = B'0000, and IOD3 to IOD0 = B'10xx.

2. TCLKB input when the setting for TCR0 to TCR2 is: TPSC2 to TPSC0 = B'101.

TCLKB input when channels 1 and 5 are set to phase counting mode.

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0	000	B'0010	B'0011		
IOD3 to IOD0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	_	B'xx00	Other than B'xx00	
CCLR2 to CCLR0	_	_	_	_	Other than B'110	B'110
Output function	_	Output compare output	_	_	PWM mode 2 output	

x: Don't care

P1₂/PO₁₀/ TIOCC₀/TCLKA

Pin

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOC3 to IOC0 in TIOR0L, and bits CCLR2 to CCLR0 in TCR0), bits TPSC2 to TPSC0 in TCR0 to TCR5, bit NDER10 in NDERH, and bit P12DDR.

TPU Channel 0 Setting	Table Below (1)	able Below (1) Table Below (2)				
P12DDR	—	0	1	1		
NDER10	—	—	0	1		
Pin function	TIOCC ₀ output	P1 ₂ input	P1 ₂ output	PO ₁₀ output		
		TIOCC ₀ input *1				
	TCLKA input *2					

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0	000	B'001x	B'0010	B'0011	
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Other than B'xx00		
CCLR2 to CCLR0	—	_	_	_	Other than B'101	B'101
Output function		Output compare output		PWM mode 1 output ^{*3}	PWM mode 2 output	

x: Don't care

- Notes: 1. TIOCC₀ input when MD3 to MD0 = B'0000, and IOC3 to IOC0 = B'10xx.
 - TCLKA input when the setting for TCR0 to TCR5 is: TPSC2 to TPSC0 = B'100.

TCLKA input when channels 1 and 5 are set to phase counting mode.

 TIOCD₀ output is disabled. When BFA = 1 or BFB = 1 in TMDR0, output is disabled and setting (2) applies.

HITACHI

130

P1₁/PO₉/TIOCB₀

Pin

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOB3 to IOB0 in TIOR0H, and bits CCLR2 to CCLR0 in TCR0), bit NDER9 in NDERH, and bit P11DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)				
P11DDR	_	0	1	1		
NDER9	—	—	0	1		
Pin function	TIOCB₀ output	P1₁ input	P1₁ output	PO ₉ output		
		TIOCB ₀ input *				

Note: $* TIOCB_0$ input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx.

TPU Channel 0 Setting	(2)	(1)	(2)	(2)	(1)	(2)
MD3 to MD0	B'0	000	B'0010	B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other than B'xx00	
CCLR2 to CCLR0	_		_		Other than B'010	B'010
Output function		Output compare output	_		PWM mode 2 output	

x: Don't care

P1₀/PO₈/TIOCA₀

Pin

The pin function is switched as shown below according to the combination of the TPU channel 0 setting (by bits MD3 to MD0 in TMDR0, bits IOA3 to IOA0 in TIOR0H, and bits CCLR2 to CCLR0 in TCR0), bit NDER8 in NDERH, and bit P10DDR.

TPU Channel 0 Setting	Table Below (1)	Table Below (2)			
P10DDR	_	0	1	1	
NDER8	—	—	0	1	
Pin function	TIOCA₀ output	P1 ₀ input	P1₀ output	PO ₈ output	
		TIOCA ₀ input *1			

TPU Channel 0 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0	000	B'001x	B'0010	B'0	011	
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Oth	Other than B'xx00		
CCLR2 to CCLR0	_	_	_		Other than B'001	B'001	
Output function	—	Output compare output	—	PWM mode 1 output ^{*2}	PWM mode 2 output	—	

x: Don't care

Notes: 1. TIOCA₀ input when MD3 to MD0 = B'0000, and IOA3 to IOA0 = B'10xx.

2. TIOCB $_0$ output is disabled.

5.3 Port 2

5.3.1 Overview

Port 2 is an 8-bit I/O port. Port 2 pins also function as PPG output pins (PO₇ to PO₀) and TPU I/O pins (TIOCA₃, TIOCB₃, TIOCC₃, TIOCD₃, TIOCA₄, TIOCB₄, TIOCA₅, and TIOCB₅). Port 2 pin functions are the same in all operating modes. Port 2 uses Schmitt-triggered input.

Figure 5.2 shows the port 2 pin configuration.

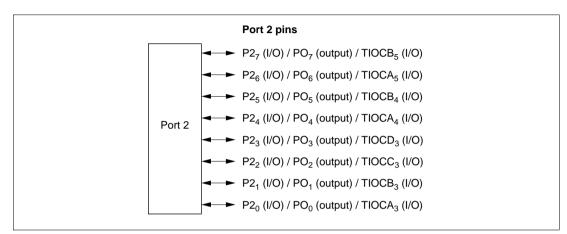


Figure 5.2 Port 2 Pin Functions

5.3.2 Register Configuration

Table 5.4 shows the port 2 register configuration.

Table 5.4Port 2 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 2 data direction register	P2DDR	W	H'00	H'FEB1
Port 2 data register	P2DR	R/W	H'00	H'FF61
Port 2 register	PORT2	R	Undefined	H'FF51

Note: * Lower 16 bits of the address.

Port 2 Data Direction Register (P2DDR)

Bit	:	7	6	5	4	3	2	1	0
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial valu	ie :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P2DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 2. P2DDR cannot be read; if it is, an undefined value will be read.

Setting a P2DDR bit to 1 makes the corresponding port 2 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P2DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 2 Data Register (P2DR)

Bit	:	7	6	5	4	3	2	1	0
		P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P2DR is an 8-bit readable/writable register that stores output data for the port 2 pins (P27 to P20).

P2DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 2 Register (PORT2)

Bit	:	7	6	5	4	3	2	1	0
		P27	P26	P25	P24	P23	P22	P21	P20
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P27 to P20.

PORT2 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 2 pins ($P2_7$ to $P2_0$) must always be performed on P2DR.

If a port 2 read is performed while P2DDR bits are set to 1, the P2DR values are read. If a port 2 read is performed while P2DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT2 contents are determined by the pin states, as P2DDR and P2DR are initialized. PORT2 retains its prior state in software standby mode.

5.3.3 Pin Functions

Port 2 pins also function as PPG output pins (PO₇ to PO₀) and TPU I/O pins (TIOCA₃, TIOCB₃, TIOCC₃, TIOCD₃, TIOCA₄, TIOCB₄, TIOCA₅, and TIOCB₅). Port 2 pin functions are shown in table 5.5.

Table 5.5Port 2 Pin Functions

Pin Selection Method and Pin Functions

P2₇/PO₇/TIOCB₅ The pin function is switched as shown below according to the combination of the TPU channel 5 setting (by bits MD3 to MD0 in TMDR5, bits IOB3 to IOB0 in TIOR5, and bits CCLR1 and CCLR0 in TCR5), bit NDER7 in NDERL, and bit P27DDR.

TPU Channel 5 Setting	Table Below (1)	Table Below (2)				
P27DDR	—	0	1	1		
NDER7	—	—	0	1		
Pin function	TIOCB₅ output	P2 ₇ input	P2 ₇ output	PO ₇ output		
		TIOCB₅ input *				

Note: * TIOCB₅ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 = 1.

TPU Channel 5 Setting	(2)	(1)	(2)	(2)	(1)	(2)		
MD3 to MD0	B'0000	, B'01xx	B'0010		B'0011			
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other tha	Other than B'xx00		
CCLR1, CCLR0	_	—	—	_	Other than B'10	B'10		
Output function	—	Output compare output			PWM mode 2 output			
x: Don't care								

P2₆/PO₆/TIOCA₅

Pin

The pin function is switched as shown below according to the combination of the TPU channel 5 setting (by bits MD3 to MD0 in TMDR5, bits IOA3 to IOA0 in TIOR5, and bits CCLR1 and CCLR0 in TCR5), bit NDER6 in NDERL, and bit P26DDR.

TPU Channel 5 Setting	Table Below (1)	Table Below (2)					
P26DDR	—	0	1	1			
NDER6	—	—	0	1			
Pin function	TIOCA₅ output	P2 ₆ input	P2 ₆ output	PO ₆ output			
		TIOCA ₅ input *1					

TPU Channel 5 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0	011
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Other than B'xx00		
CCLR1, CCLR0			—	_	Other than B'01	B'01
Output function	_	Output compare output	_	PWM mode 1 output ^{*2}	PWM mode 2 output	—

x: Don't care

Notes: 1. TIOCA₅ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 = 1. 2. TIOCB₅ output is disabled.

P2₅/PO₅/TIOCB₄

Pin

The pin function is switched as shown below according to the combination of the TPU channel 4 setting (by bits MD3 to MD0 in TMDR4, bits IOB3 to IOB0 in TIOR4, and bits CCLR1 and CCLR0 in TCR4), bit NDER5 in NDERL, and bit P25DDR.

TPU Channel 4 Setting	Table Below (1)	Ta	able Below	(2)
P25DDR	—	0	1	1
NDER5	—	—	0	1
Pin function	TIOCB₄ output	P2₅ input	P2₅ output	PO₅ output
		TI	OCB₄ inpu	t *

Note: * TIOCB₄ input when MD3 to MD0 = B'0000 or B'01xx, and IOB3 to IOB0 = B'10xx.

TPU Channel 4 Setting	(2)	(1)	(2)	(2)	(1)	(2)		
MD3 to MD0	B'0000	, B'01xx	B'0010		B'0011			
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other tha	Other than B'xx00		
CCLR1, CCLR0			—		Other than B'10	B'10		
Output function		Output compare output	—		PWM mode 2 output	—		

x: Don't care

P2₄/PO₄/TIOCA₄

Pin

The pin function is switched as shown below according to the combination of the TPU channel 4 setting (by bits MD3 to MD0 in TMDR4, bits IOA3 to IOA0 in TIOR4, and bits CCLR1 and CCLR0 in TCR4), bit NDER4 in NDERL, and bit P24DDR.

TPU Channel 4 Setting	Table Below (1)	Ta	able Below	(2)
P24DDR	—	0	1	1
NDER4	—	—	0	1
Pin function	TIOCA₄ output	P2₄ input	P2₄ output	PO ₄ output
		Τŀ	OCA₄ input	t *1

TPU Channel 4 Setting	(2)	(1)	(2)	(1)	(1)	(2)	
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0011		
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111	B'xx00	Oth	er than B'x	x00	
CCLR1, CCLR0			—	_	Other than B'01	B'01	
Output function	_	Output compare output	—	PWM mode 1 output ^{*2}	PWM mode 2 output	—	

x: Don't care

Notes: 1. TIOCA₄ input when MD3 to MD0 = B'0000 or B'01xx, and IOA3 to IOA0 = B'10xx.

2. TIOCB₄ output is disabled.

P2₃/PO₃/TIOCD₃

Pin

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOD3 to IOD0 in TIOR3L, and bits CCLR2 to CCLR0 in TCR3), bit NDER3 in NDERL, and bit P23DDR.

TPU Channel 3 Setting	Table Below (1)	Table Below (2)				
P23DDR	—	0	1	1		
NDER3	—	—	0	1		
Pin function	TIOCD ₃ output	P2₃ input	P2 ₃ output	PO₃ output		
		TIOCD ₃ input *				

Note: * TIOCD₃ input when MD3 to MD0 = B'0000, and IOD3 to IOD0 = B'10xx.

TPU Channel 3 Setting	(2)	(1)	(2)	(2)	(1)	(2)		
MD3 to MD0	B'0	000	B'0010		B'0011			
IOD3 to IOD0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other that	Other than B'xx00		
CCLR2 to CCLR0			_		Other than B'110	B'110		
Output function		Output compare output	_		PWM mode 2 output	_		

x: Don't care

P2₂/PO₂/TIOCC₃

Pin

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOC3 to IOC0 in TIOR3L, and bits CCLR2 to CCLR0 in TCR3), bit NDER2 in NDERL, and bit P22DDR.

TPU Channel 3 Setting	Table Below (1)	Table Below (2)				
P22DDR	—	0	1	1		
NDER2	—	—	0	1		
Pin function	TIOCC ₃ output	P2 ₂ input	P2 ₂ output	PO ₂ output		
		TIOCC ₃ input *1				

TPU Channel 3 Setting	(2)	(1)	(2)	(1)	(1)	(2)		
MD3 to MD0	B'0	000	B'001x	B'0010	B'0	011		
IOC3 to IOC0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Oth	Other than B'xx00			
CCLR2 to CCLR0	_	_	_	_	Other than B'101	B'101		
Output function		Output compare output	_	PWM mode 1 output ^{*2}	PWM mode 2 output			

x: Don't care

Notes: 1. TIOCC₃ input when MD3 to MD0 = B'0000, and IOC3 to IOC0 = B'10xx.

 TIOCD₃ output is disabled. When BFA = 1 or BFB = 1 in TMDR3, output is disabled and setting (2) applies.

P2₁/PO₁/TIOCB₃

Pin

The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOB3 to IOB0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3), bit NDER1 in NDERL, and bit P21DDR.

TPU Channel 3 Setting	Table Below (1)	Table Below (2)				
P21DDR	—	0	1	1		
NDER1	—	—	0	1		
Pin function	TIOCB ₃ output	P2₁ input	P2 ₁ output	PO ₁ output		
		TIOCB ₃ input *				

Note: * TIOCB₃ input when MD3 to MD0 = B'0000, and IOB3 to IOB0 = B'10xx.

TPU Channel 3 Setting	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0	B'0	000	B'0010		B'0011		
IOB3 to IOB0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		B'xx00	Other than B'xx00		
CCLR2 to CCLR0	_	_	_	—	Other than B'010	B'010	
Output function	_	Output compare output		—	PWM mode 2 output	—	

x: Don't care

P2₀/PO₀/TIOCA₃

Pin

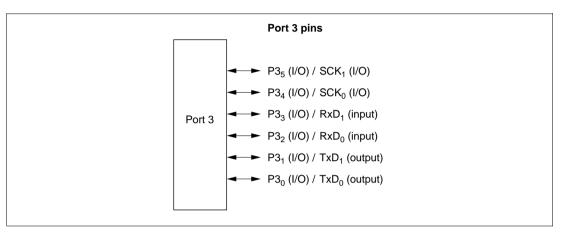
The pin function is switched as shown below according to the combination of the TPU channel 3 setting (by bits MD3 to MD0 in TMDR3, bits IOA3 to IOA0 in TIOR3H, and bits CCLR2 to CCLR0 in TCR3), bit NDER0 in NDERL, and bit P20DDR.

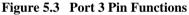
TPU Channel 3 Setting	Table Below (1)	Table Below (2)				
P20DDR	—	0	1	1		
NDER0	—	—	0	1		
Pin function	TIOCA ₃ output	P2₀ input	P2 ₀ output	PO ₀ output		
		TIOCA ₃ input *1				

TPU Channel 3 Setting	(2)	(1)	(2)	(1)	(1)	(2)		
MD3 to MD0	B'0	000	B'001x	B'0010	B'0	011		
IOA3 to IOA0	B'0000 B'0100 B'1xxx	B'0001 to B'0011 B'0101 to B'0111		Oth	Other than B'xx00			
CCLR2 to CCLR0	_		_	— Other B than B'001		B'001		
Output function		Output compare output	_	PWM mode 1 output ^{*2}	PWM mode 2 output	_		

x: Don't care

Notes: 1. TIOCA₃ input when MD3 to MD0 = B'0000, and IOA3 to IOA0 = B'10xx.


2. TIOCB₃ output is disabled.


5.4 Port 3

5.4.1 Overview

Port 3 is a 6-bit I/O port. Port 3 pins also function as SCI I/O pins $(TxD_0, RxD_0, SCK_0, TxD_1, RxD_1, and SCK_1)$. Port 3 pin functions are the same in all operating modes.

Figure 5.3 shows the port 3 pin configuration.

5.4.2 Register Configuration

Table 5.6 shows the port 3 register configuration.

Table 5.6Port 3 Registers

Name	Abbreviation	R/W	Initial Value*2	Address*1
Port 3 data direction register	P3DDR	W	H'00	H'FEB2
Port 3 data register	P3DR	R/W	H'00	H'FF62
Port 3 register	PORT3	R	Undefined	H'FF52
Port 3 open drain control register	P3ODR	R/W	H'00	H'FF76

Notes: 1. Lower 16 bits of the address.

2. Value of bits 5 to 0.

Port 3 Data Direction Register (P3DDR)

Bit	:	7	6	5	4	3	2	1	0
		—	—	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
Initial val	lue :	Undefined	Undefined	0	0	0	0	0	0
R/W	:	_	—	W	W	W	W	W	W

P3DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 3. Bits 7 and 6 are reserved. P3DDR cannot be read; if it is, an undefined value will be read.

Setting a P3DDR bit to 1 makes the corresponding port 3 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P3DDR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode. As the SCI is initialized, the pin states are determined by the P3DDR and P3DR specifications.

Port 3 Data Register (P3DR)

Bit	:	7	6	5	4	3	2	1	0
		—	—	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
Initial va	lue :	Undefined	Undefined	0	0	0	0	0	0
R/W	:	—	—	R/W	R/W	R/W	R/W	R/W	R/W

P3DR is an 8-bit readable/writable register that stores output data for the port 3 pins (P3₅ to P3₀).

Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

P3DR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 3 Register (PORT3)

Bit	:	7	6	5	4	3	2	1	0
		—	_	P35	P34	P33	P32	P31	P30
Initial va	lue :	Undefined	Undefined	*	*	*	*	*	*
R/W	:	—	—	R	R	R	R	R	R

Note: * Determined by state of pins P35 to P30.

PORT3 is an 8-bit read-only register that shows the pin states. Writing of output data for the port 3 pins ($P3_5$ to $P3_0$) must always be performed on P3DR.

Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

If a port 3 read is performed while P3DDR bits are set to 1, the P3DR values are read. If a port 3 read is performed while P3DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT3 contents are determined by the pin states, as P3DDR and P3DR are initialized. PORT3 retains its prior state in software standby mode.

Port 3 Open Drain Control Register (P3ODR)

Bit	:	7	6	5	4	3	2	1	0
				P35ODR	P340DR	P33ODR	P32ODR	P310DR	P30ODR
Initial va	alue :	Undefined	Undefined	0	0	0	0	0	0
R/W	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

P3ODR is an 8-bit readable/writable register that controls the PMOS on/off status for each port 3 pin (P3₅ to P3₀).

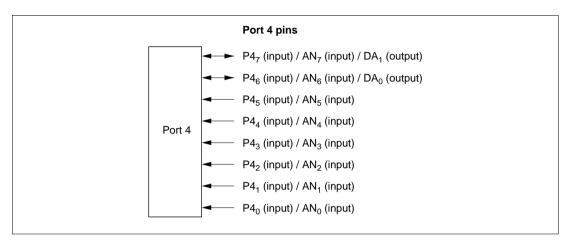
Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

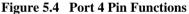
Setting a P3ODR bit to 1 makes the corresponding port 3 pin an NMOS open-drain output pin, while clearing the bit to 0 makes the pin a CMOS output pin.

P3ODR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

5.4.3 Pin Functions

Port 3 pins also function as SCI I/O pins (TxD₀, RxD₀, SCK₀, TxD₁, RxD₁, and SCK₁). Port 3 pin functions are shown in table 5.7.


P3 ₅ /SCK ₁	The pin function bit C/\overline{A} in the S					
	CKE1		1			
	C/Ā		0		1	_
	CKE0		0	1		_
	P35DDR	0	1			_
	Pin function	P3₅ input pin	P3₅ output pin*	SCK ₁ output pin*	SCK ₁ output pin*	SCK ₁ input pin
	Noto: * Whon				OS opop dra	in output
P3₄/SCK₀	Note: * When The pin function bit C/A in the S	P35ODR = 1	I, the pin bec	omes an NM low accordin	g to the com	pination of
P3₄/SCK₀	The pin function	P35ODR = 1	l, the pin bec as shown be s CKE0 and (omes an NM low accordin	g to the com	pination of
P3₄/SCK₀	The pin function bit C/A in the Section	P35ODR = 1	l, the pin bec as shown be s CKE0 and (omes an NM low accordin CKE1 in SCF	g to the com	bination of IDDR.
P3₄/SCK₀	The pin function bit C/A in the St	P35ODR = 1 n is switched CI0 SMR, bits	as shown be s CKE0 and (omes an NM low accordin CKE1 in SCF	g to the com R, and bit P34	bination of IDDR.
P3₄/SCK₀	The pin function bit C/Ā in the S CKE1 C/Ā	P35ODR = 1 n is switched CI0 SMR, bits	as shown be s CKE0 and (0	omes an NM low accordin CKE1 in SCF	g to the com R, and bit P34	bination of IDDR.


P3₃/RxD₁		is switched as show I1 SCR, and bit P33I	n below according to DDR.	the combination o				
	RE		0	1				
	P33DDR	0	1					
	Pin function	P3 ₃ input pin	RxD ₁ input pin					
	Note: * When	P33ODR = 1, the pin	becomes an NMOS	open-drain output.				
P3 ₂ /RxD ₀		The pin function is switched as shown below according to the combination of bit RE in the SCI0 SCR, and bit P32DDR.						
	RE		1					
	P32DDR	0	1	—				
	Pin function	P3 ₂ input pin	P32 output pin*	RxD₀ input pin				
P3 ₁ /TxD ₁	The pin function	open-drain output.						
		I1 SCR, and bit P31D						
		I1 SCR, and bit P31D		1				
	bit TE in the SC	I1 SCR, and bit P31D	DDR.					
	bit TE in the SC	I1 SCR, and bit P31E	DDR.	1				
	bit TE in the SC TE P31DDR Pin function	I1 SCR, and bit P31E 0 P3 ₁ input pin	0 1	1 — TxD₁ output pir				
P3 ₀ /TxD ₀	bit TE in the SC TE P31DDR Pin function Note: * When The pin function	I1 SCR, and bit P31E 0 P3₁ input pin P31ODR = 1, the pin	DDR. 0 1 P3, output pin* becomes an NMOS n below according to	1 ── TxD₁ output pir open-drain output				
P3₀/TxD₀	bit TE in the SC TE P31DDR Pin function Note: * When The pin function	I1 SCR, and bit P31E 0 P3₁ input pin P310DR = 1, the pin is switched as show I0 SCR, and bit P30E	DDR. 0 1 P3, output pin* becomes an NMOS n below according to	1 ── TxD₁ output pir open-drain output				
P3 ₀ /TxD ₀	bit TE in the SC TE P31DDR Pin function Note: * When The pin function bit TE in the SC	I1 SCR, and bit P31E 0 P3₁ input pin P310DR = 1, the pin is switched as show I0 SCR, and bit P30E	DDR. 0 1 P3, output pin* becomes an NMOS n below according to DDR.	1 — TxD ₁ output pir open-drain output the combination o				

5.5 Port 4

5.5.1 Overview

Port 4 is an 8-bit input-only port. Port 4 pins also function as A/D converter analog input pins $(AN_0 \text{ to } AN_7)$ and D/A converter analog output pins $(DA_0 \text{ and } DA_1)$. Port 4 pin functions are the same in all operating modes. Figure 5.4 shows the port 4 pin configuration.

5.5.2 Register Configuration

Table 5.8 shows the port 4 register configuration. Port 4 is an input-only port, and does not have a data direction register or data register.

Table 5.8Port 4 Register

Name	Abbreviation	R/W	Initial Value	Address*
Port 4 register	PORT4	R	Undefined	H'FF53

Note: * Lower 16 bits of the address.

Port 4 Register (PORT4): The pin states are always read when a port 4 read is performed.

Bit	:	7	6	5	4	3	2	1	0
		P47	P46	P45	P44	P43	P42	P41	P40
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P4₇ to P4₀.

5.5.3 Pin Functions

Port 4 pins also function as A/D converter analog input pins (AN₀ to AN₇) and D/A converter analog output pins (DA₀ and DA₁).

5.6 Port 5

5.6.1 Overview

Port 5 comprises a 4-bit I/O port and a 4-bit input port. Port 5 pins also function as SCI I/O pins $(TxD_2, RxD_2, and SCK_2)$, the A/D converter input pin (\overline{ADTRG}) , A/D converter analog input pins $(AN_{12} \text{ to } AN_{15})$, D/A converter analog output pins $(DA_2 \text{ and } DA_3)$, interrupt input pins $(\overline{IRQ}_4 \text{ to } \overline{IRQ}_7)$, and bus control signal I/O pins $(\overline{WAIT} \text{ and } \overline{BREQO})$. The pin functions can be switched by means of settings in PFCR2 and SYSCR. \overline{IRQ}_4 to \overline{IRQ}_7 are Schmitt-triggered inputs. Figure 5.5 shows the port 5 pin configuration.

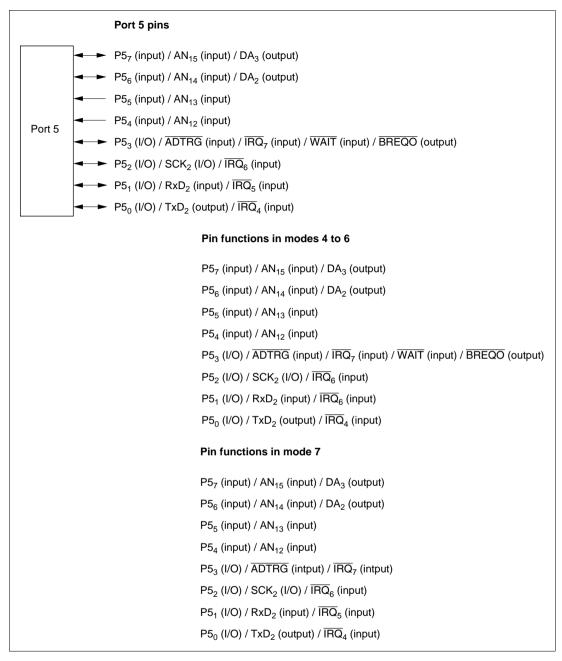


Figure 5.5 Port 5 Pin Functions

5.6.2 Register Configuration

Table 5.9 shows the port 5 register configuration.

Bits 7 to 4 of port 5 are input ports, and have no data direction register or data register.

Table 5.9	Port 5 Registers
-----------	------------------

Name	Abbreviation	R/W	Initial Value	Address*1
Port 5 data direction register	P5DDR	W	H'0* ²	H'FEB4
Port 5 data register	P5DR	R/W	H'0* ²	H'FF64
Port 5 register	PORT5	R	Undefined	H'FF54
Port function control register 2	PFCR2	R/W	H'30	H'FFAC
System control register	SYSCR	R/W	H'01	H'FF39

Notes: 1. Lower 16 bits of the address.

2. Value of bits 3 to 0.

Port 5 Data Direction Register (P5DDR)

Bit	:	7	6	5	4	3	2	1	0
			—	—	—	P53DDR	P52DDR	P51DDR	P50DDR
Initial va	alue :	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:	_	—	_		W	W	W	W

P5DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 5. Bits 7 to 4 are reserved. P5DDR cannot be read; if it is, an undefined value will be read.

Setting a P5DDR bit to 1 makes the corresponding port 5 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P5DDR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode. As the SCI is initialized, the pin states are determined by the P5DDR and P5DR specifications.

Port 5 Data Register (P5DR)

Bit	:	7	6	5	4	3	2	1	0
		—	—	—	—	P53DR	P52DR	P51DR	P50DR
Initial va	alue :	Undefined	Undefined	Undefined	Undefined	0	0	0	0
R/W	:	_	_	_	_	R/W	R/W	R/W	R/W

P5DR is an 8-bit readable/writable register that stores output data for the port 5 pins (P5₃ to P5₀).

Bits 7 to 4 are reserved; they return an undefined value if read, and cannot be modified.

P5DR is initialized to H'0 (bits 3 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 5 Register (PORT5)

Bit	:	7	6	5	4	3	2	1	0
		P57	P56	P55	P54	P53	P52	P51	P50
Initial va	lue :	Undefined	Undefined	Undefined	Undefined	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P5₇ to P5₀.

PORT5 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 5 pins ($P5_3$ to $P5_0$) must always be performed on P5DR.

Bits 7 to 4 always return the pin states when a port 5 read is performed, without regard to P5DDR.

If a port 5 read is performed while P5DDR bits are set to 1, the P5DR values are read. If a port 5 read is performed while P5DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT5 contents are determined by the pin states, as P5DDR and P5DR are initialized. PORT5 retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0
		WAITPS	BREQOPS	CS167E	CS25E	ASOD	_		—
Initial val	lue :	0	0	1	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the $\overline{\text{WAIT}}$ input pin. Set the WAITPS bit before setting the DDR bit clear to 0 and the WAITE bit in BCRL to 1.

Bit 7 WAITPS	Description	
0	WAIT input is P8 ₆ pin	(Initial value)
1	$\overline{\text{WAIT}}$ input is P5 ₃ pin	

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. Set the BREQOPS bit before setting the BREQOE bit in BCRL to 1.

Bit 6 BREQOPS	Description	
0	$\overline{\text{BREQO}}$ output is PF_2 pin	(Initial value)
1	\overline{BREQO} output is P5 ₃ pin	

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. For details, see section 5.7, Port 6 and section 5.17, Port G.

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. For details, see section 5.7, Port 6 and section 5.17, Port G.

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 5.16, Port F.

System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
		_	—	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial va	lue :	0	0	0	0	0	0	0	1
R/W	:	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the \overline{IRQ}_4 to \overline{IRQ}_7 input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 3, Interrupt Controller, in the Hardware Manual.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 3, Interrupt Controller, in the Hardware Manual.

Bit 2—LWR Output Disable (LWROD): Enables or disables \overline{LWR} output. For details, see section 5.16, Port F.

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for \overline{IRQ}_4 to \overline{IRQ}_7 . \overline{IRQ}_4 to \overline{IRQ}_7 input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	$P9_4$ to $P9_7$ used for \overline{RQ}_4 to \overline{IRQ}_7 input	(Initial value)
1	$P5_3$ to $P5_0$ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 16, RAM, in the Hardware Manual.

5.6.3 Pin Functions

Port 5 pins also function as SCI I/O pins (TxD₂, RxD₂, and SCK₂), the A/D converter input pin ($\overline{\text{ADTRG}}$), interrupt input pins ($\overline{\text{IRQ}}_4$ to $\overline{\text{IRQ}}_7$), and bus control signal I/O pins ($\overline{\text{WAIT}}$ and $\overline{\text{BREQO}}$). Port 5 pins P5₇ to P5₄ also function as A/D converter analog input pins (AN₁₂ to AN₁₅) and D/A converter analog output pins (DA₂ and DA₃).Port 5 pin functions are shown in table 5.10.

Table 5.10	Port 5 Pin Functions
------------	----------------------

Pin	Selection Method and Pin Functions								
P5 ₇ /AN ₁₅ /DA ₃ P5 ₆ /AN ₁₄ /DA ₂ P5 ₅ /AN ₁₃ P5 ₄ /AN ₁₂	These pins also function as A/D converter analog input pins $(AN_{12} \text{ to } AN_{15})$ and D/A converter analog output pins $(DA_2 \text{ and } DA_3)$. P5 ₇ to P5 ₄ have no data direction register.								
P5₃/ADTRG/ IRQ₂/WAIT/ BREQO	the operating m	The pin function is switched as shown below according to the combination of the operating mode, bits TRGS1 and TRGS0 in the A/D control register (ADCR), and bits IRQPAS, WAITE, WAITPS, BREQOE, BREQOPS, and P53DDR.							
	Operating Modes 4 to 6 Mode 7 mode								de 7
	[BREQOE BREQOPS]			0			1	_	_
	[WAITE · WAITPS]	(0		1	0	1	-	-
	P53DDR	0	1	0	1	0	1	0	1
Pin function $P5_3$ $P5_3$ $WAIT$ Setting $BREQ_0$ Setting $P5_3$ inputoutputinputoutputinputpro-outputpro-pinpinpinpinhibitedpinhibited									
	ADTRG input pin*1								
	IRQ ₇ interrupt input pin* ²								
	Notes: 1. ADT	RG inpu	ut when	TRGS0	= TRGS	61 = 0.			
	2. $\overline{\text{IRQ}}_7$ input when IRQPAS = 1.								

Pin	Selection Meth	od and Pin	Functions					
P5 ₂ /SCK ₂ /IRQ ₆	The pin function is switched as shown below according to the combination of bit C/ \overline{A} in the SCI2 SMR, bits CKE0 and CKE1 in SCR, and bits IRQPAS and P52DDR.							
	CKE1	0 1						
	C/Ā		0		1	—		
	CKE0	(0	1		_		
	P52DDR	0	1	—	—	—		
	Pin function	P5 ₂ input pin	P5 ₂ output pin	SCK ₂ output pin	SCK ₂ output pin	SCK ₂ input pin		
			\overline{IRQ}_{6}	interrupt inpu	ut pin*			
	Note: * IRQ ₆ inp	ut when IRQ	PAS = 1.					
$P5_1/RxD_2/\overline{IRQ}_5$	The pin function is switched as shown below according to the combination o bit RE in the SCI2 SCR, and bits IRQPAS and P51DDR.							
	RE		0			1		
	P51DDR	0		1		—		
	Pin function	P5₁ inpu	It pin I	P5 ₁ output pi	n RxD	2 input pin		
			ĪRQ₅	interrupt inpu	ut pin*			
	Note: * IRQ ₅ inp	ut when IRQ	PAS = 1.					
$P5_0/TxD_2/\overline{IRQ}_4$	The pin function bit TE in the SC					bination of		
	TE		0			1		
	P50DDR	0		1		_		
	Pin function $P5_0$ input pin $P5_0$ output pin TxD_2 output p							
	IRQ₄ interrupt input pin*							
	Note: * IRQ ₄ inp	ut when IRQ	PAS = 1.					

5.7 Port 6

5.7.1 Overview

Port 6 is an 8-bit I/O port. Port 6 pins also function as interrupt input pins (\overline{IRQ}_0 and \overline{IRQ}_1) and bus control output pins (\overline{CS}_4 to \overline{CS}_7). The functions of pins P6₅ to P6₂ are the same in all operating modes, while the functions of pins P6₇, P6₆, P6₁, and P6₀ change according to the operating mode. Switching of \overline{CS}_4 to \overline{CS}_7 output can be performed by setting PFCR2. Pins P6₇ to P6₄ are Schmitttriggered inputs. Figure 5.6 shows the port 6 pin configuration.

	Port 6 pins	Pin functions in modes 4 to 6
	\blacksquare $P6_7 / \overline{CS}_7$	$P6_7$ (input) / \overline{CS}_7 (output)
	\checkmark P6 ₆ / \overline{CS}_6	$P6_6$ (input) / \overline{CS}_6 (output)
	\checkmark P6 ₅ / \overline{IRQ}_1	P6 ₅ (I/O) / IRQ ₁ (input)
Port 6	\checkmark P6 ₄ / \overline{IRQ}_0	P6 ₄ (I/O) / IRQ ₀ (input)
	 ➡ P6₃ 	P6 ₃ (I/O)
	 ➡ P62 	P6 ₂ (I/O)
	\checkmark P6 ₁ / $\overline{\text{CS}}_5$	$P6_1$ (input) / \overline{CS}_5 (output)
	\checkmark P6 ₀ / \overline{CS}_4	$P6_0$ (input) / \overline{CS}_4 (output)
		Pin functions in mode 7
		P6 ₇ (I/O)
		P6 ₆ (I/O)
		P6 ₅ (I/O) / IRQ ₁ (input)
		P6 ₄ (I/O) / IRQ ₀ (input)
		P6 ₃ (I/O)
		P6 ₂ (I/O)
		P6 ₁ (I/O)
		P6 ₀ (I/O)

5.7.2 Register Configuration

Table 5.11 shows the port 6 register configuration.

Table 5.11 Port 6 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 6 data direction register	P6DDR	W	H'00	H'FEB5
Port 6 data register	P6DR	R/W	H'00	H'FF65
Port 6 register	PORT6	R	Undefined	H'FF55
Port function control register 2	PFCR2	R/W	H'30	H'FFAC

Note: * Lower 16 bits of the address.

Port 6 Data Direction Register (P6DDR)

Bit	:	7	6	5	4	3	2	1	0
		P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

P6DDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port 6. P6DDR cannot be read; if it is, an undefined value will be read.

Setting a P6DDR bit to 1 makes the corresponding port 6 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P6DDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 6 Data Register (P6DR)

Bit	:	7	6	5	4	3	2	1	0
		P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

P6DR is an 8-bit readable/writable register that stores output data for the port 6 pins (P67 to P60).

P6DR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 6 Register (PORT6)

Bit	:	7	6	5	4	3	2	1	0
		P67	P66	P65	P64	P63	P62	P61	P60
Initial value :		*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins P67 to P60.

PORT6 is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 6 pins ($P6_7$ to $P6_0$) must always be performed on P6DR.

If a port 6 read is performed while P6DDR bits are set to 1, the P6DR values are read. If a port 6 read is performed while P6DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT6 contents are determined by the pin states, as P6DDR and P6DR are initialized. PORT6 retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0
		WAITPS	BREQOPS	CS167E	CS25E	ASOD			—
Initial va	alue :	0	0	1	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the \overline{WAIT} input pin. For details, see section 5.6, Port 5.

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. For details, see section 5.6, Port 5.

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. Only change the CS167E bit setting when the DDR bits are cleared to 0.

Bit 5 CS167E	Description	
0	\overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output disabled (can be used as I/O ports)	
1	\overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output enabled	(Initial value)

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. Only change the CS25E bit setting when the DDR bits are cleared to 0.

Bit 4 CS25E	Description	
0	\overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output disabled (can be used as I/O ports)	
1	\overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output enabled	(Initial value)

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 5.16, Port F.

Bits 2 to 0—Reserved

5.7.3 Pin Functions

Port 6 pins also function as interrupt input pins (\overline{IRQ}_0 and \overline{IRQ}_1) and bus control output pins (\overline{CS}_4 to \overline{CS}_7). Port 6 pin functions are shown in table 5.12.

Table 5.12Port 6 Pin Functions

Pin	Selection Me	thod and	Pin Functi	ons					
P6 ₇ / CS ₇	The pin function is switched as shown below according to the combination of bits P67DDR and CS167E.								
	Mode		Modes 4 to 6				Mode 7		
	CS167E	0		1		0	1		
	P67DDR	0	1	0	1		_		
	Pin function	P6 ₇ input pin	P6 ₇ output pin	P6 ₇ input pin	CS ₇ output pin	P6 ₇ input pin	P6 ₇ output pin		
	<u> </u>								
$P6_6/\overline{CS}_6$	The pin function is switched as shown below according to the combination of bits P66DDR and CS167E.								
	Mode		Mode		Mode 7				
	CS167E	0		1		0	1		
	P66DDR	0	1	0	1		_		
	Pin function	P6 ₆ input pin	P6 ₆ output pin	P6 ₆ input pin	CS ₆ output pin	P6 ₆ input pin	P6 ₆ output pin		
	L		1		I				
$P6_5/\overline{IRQ}_1$	The pin function is switched as shown below according to bit P65DDR.								
	P65DDR	0			1				
	Pin function	P6₅ input pin			P6₅ output pin				
		IRQ₁ interrupt input pin							
	L								
$P6_4/\overline{IRQ}_0$	The pin function is switched as shown below according to bit P64DDR.								
	P64DDR		0			1			
	Pin function		P64 input pin			P6₄ output pin			
	1		4 1 1			4 1 1			

 $\overline{\text{IRQ}}_{\scriptscriptstyle 0}$ interrupt input pin

Pin	Selection Me	thod and	Pin Functi	ons							
P6 ₃	The pin functi	on is swite	ched as sho	wn below a	ccording to	bit P63DE	DR.				
	P63DDR		0			1					
	Pin function		P63 input	pin	Р	6 ₃ output	pin				
P6 ₂	The pin functi	on is switc	hed as sho	wn below a	ccording to	bit P62DF)R				
1 02	P62DDR		0			1					
	Pin function		P6 ₂ input	pin	P	6 ₂ output	pin				
P6₁/CS₅	The pin functi bits P61DDR Mode	bits P61DDR and CS25E. Mode Modes 4 to 6									
1 5	•										
	Mode		Mode	s 4 to 6		Mc	de 7				
	CS25E		0		1	0	1				
	P61DDR	0	1	0	1	—	—				
	Pin function	P6₁ input pin	P6 ₁ output pin	P6₁ input pin	CS₅ output pin	P6₁ input pin	P6₁ output pin				
P6 ₀ / CS ₄	The pin functi bits P60DDR			wn below a	according to	the combi	nation of				
	Mode		Mode	s 4 to 6		Мс	de 7				
	CS25E		0		1	0	1				
	P60DDR	0	1	0	1						
	FOUDDR	-			1						

5.8 Port 7

5.8.1 Overview

Port 7 is a 6-bit I/O port. Port 7 pins also function as 8-bit timer I/O pins ($TMRI_0$, $TMCI_0$, TMO_0 , $TMRI_1$, $TMCI_1$, TMO_1). Port 7 pin functions are the same in all operating modes. Port 7 uses Schmitt-triggered input.

Figure 5.7 shows the port 7 pin configuration.

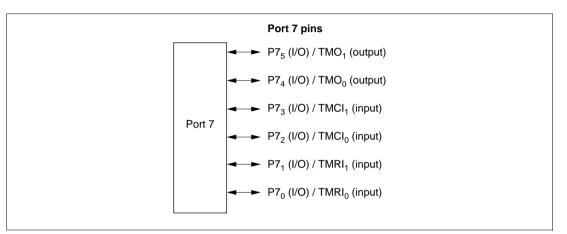


Figure 5.7 Port 7 Pin Functions

5.8.2 Register Configuration

Table 5.13 shows the port 7 register configuration.

Table 5.13 Port 7 Registers

Name	Abbreviation	R/W	Initial Value* ²	Address*1
Port 7 data direction register	P7DDR	W	H'00	H'FEB6
Port 7 data register	P7DR	R/W	H'00	H'FF66
Port 7 register	PORT7	R	Undefined	H'FF56

Notes: 1. Lower 16 bits of the address.

2. Value of bits 5 to 0.

Port 7 Data Direction Register (P7DDR)

Bit	:	7	6	5	4	3	2	1	0
		_	—	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR
Initial v	alue :	Undefined	Undefined	0	0	0	0	0	0
R/W	:	_	_	W	W	W	W	W	W

P7DDR is a 6-bit write-only register, the individual bits of which specify input or output for the pins of port 7. P2DDR cannot be read; if it is, an undefined value will be read. Bits 7 and 6 are reserved.

Setting a P7DDR bit to 1 makes the corresponding port 7 pin an output pin, while clearing the bit to 0 makes the pin an input port.

P7DDR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 7 Data Register (P7DR)

Bit	7	6	5	4	3	2	1	0
	—	—	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR
Initial value	Undefined	Undefined	0	0	0	0	0	0
R/W	—	—	R/W	R/W	R/W	R/W	R/W	R/W

P7DR is a 6-bit readable/writable register that stores output data for the port 7 pins (P7₅ to P7₀). Bits 7 and 6 are reserved; they return an undefined value if read, and cannot be modified.

P7DR is initialized to H'00 (bits 5 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 7 Register (PORT7)

Bit	:	7	6	5	4	3	2	1	0
		—	—	P75	P74	P73	P72	P71	P70
Initial va	alue :	Undefined	Undefined	*	*	*	*	*	*
R/W	:	—	—	R	R	R	R	R	R

Note: * Determined by state of pins P7₅ to P7₀.

PORT7 is a 6-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 7 pins ($P7_5$ to $P7_0$) must always be performed on P7DR.

If a port 7 read is performed while P7DDR bits are set to 1, the P7DR values are read. If a port 7 read is performed while P7DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT7 contents are determined by the pin states, as P7DDR and P7DR are initialized. PORT7 retains its prior state in software standby mode.

5.8.3 Pin Functions

Port 7 pins also function as 8-bit timer I/O pins (TMRI₀, TMCI₀, TMO₀, TMRI₁, TMCI₁, and TMO₁). Port 7 pin functions are shown in table 5.14.

Table 5.14Port 7 Pin Functions

Pin	Selection Method	and Pin Functio	ons					
P7 ₅ /TMO ₁	The pin function is switched as shown below according to the combination of bits OS3 to OS0 in 8-bit timer TCSR1 and bit P75DDR.							
	OS3 to OS0	AI	10	Not all 0				
	P75DDR	0	1	_				
	Pin function	$P7_5$ input pin	P7₅ output pin	TMO_1 output pin				
P7₄/TMO₀	bits OS3 to OS0 in	8-bit timer TCSR	0 and bit P74D					
	OS3 to OS0	AI	10	Not all 0				
	P74DDR	0	1	—				
	Pin function	P7₄ input pin	P7₄ output pin	TMO_{0} output pin				
P7 ₃ /TMCI ₁		ed as an 8-bit tim	ner external cloc	ding to bit P73DDR. sk input pin, the external				
	P73DDR	()	1				
	Pin function	P7 ₃ inp	out pin	P7 ₃ output pin				
			TMCL in	nput pin				

Pin	Selection Method and	d Pin Functions					
P7 ₂ /TMCI ₀	When this pin is used a	tched as shown below acco as an 8-bit timer external cl its CKS2 to CKS0 in TCR0	ock input pin, the external				
	P72DDR	0	1				
	Pin function	P7 ₂ input pin	P7 ₂ output pin				
			input pin				
P7₁/TMRI₁	The pin function is switched as shown below according to bit P71DDR. When this pin is used as an 8-bit timer counter reset pin, bits CCLR1 and CCLR0 in TCR1 are both set to 1.						
	P71DDR	0	1				
	Pin function	P7₁ input pin	P7 ₁ output pin				
		TMRI ₁ input pin					
P7₀/TMRI₀	The pin function is swit	tched as shown below acco	ording to bit P70DDR.				

7₀/TMRI₀ The pin function is switched as shown below according to bit P70DDR. When this pin is used as an 8-bit timer counter reset pin, bits CCLR1 and CCLR0 in TCR0 are both set to 1.

P70DDR	0	1					
Pin function	$P7_0$ input pin	P7 ₀ output pin					
	TMRI ₀ input pin						

5.9 Port 8

5.9.1 Overview

Port 8 is a 7-bit I/O port. Port 8 pins also function as DMAC I/O pins ($\overline{\text{DREQ}}_0$, $\overline{\text{TEND}}_0$, $\overline{\text{DACK}}_0$, $\overline{\text{DREQ}}_1$, $\overline{\text{TEND}}_1$, and $\overline{\text{DACK}}_1$) and a bus control signal input pin ($\overline{\text{WAIT}}$). Figure 5.8 shows the port 8 pin configuration.

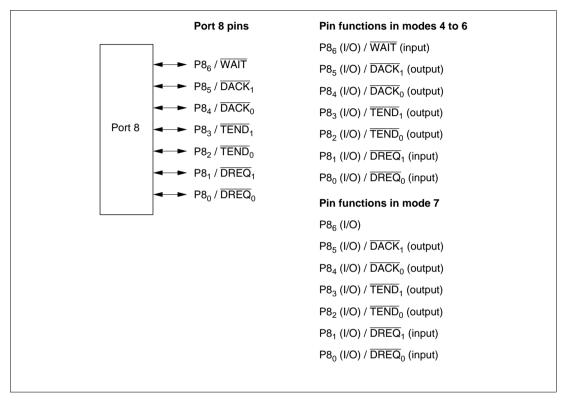


Figure 5.8 Port 8 Pin Functions

5.9.2 Register Configuration

Table 5.15 shows the port 8 register configuration.

Table 5.15 Port 8 Registers

Name	Abbreviation	R/W	Initial Value* ²	Address*1
Port 8 data direction register	P8DDR	W	H'00	H'FEB7
Port 8 data register	P8DR	R/W	H'00	H'FF67
Port 8 register	PORT8	R	Undefined	H'FF57
Port function control register2	PFCR2	R/W	H'30	H'FFAC

Notes: 1. Lower 16 bits of the address.

2. Value of bits 6 to 0.

Port 8 Data Direction Register (P8DDR)

Bit	:	7	6	5	4	3	2	1	0
		—	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR
Initial va	alue :	Undefined	0	0	0	0	0	0	0
R/W	:	—	W	W	W	W	W	W	W

P8DDR is a 7-bit write-only register, the individual bits of which specify input or output for the pins of port 8. P2DDR cannot be read; if it is, an undefined value will be read. Bit 7 is reserved.

Setting a P8DDR bit to 1 makes the corresponding port 8 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P8DDR is initialized to H'00 (bits 6 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 8 Data Register (P8DR)

Bit	:	7	6	5	4	3	2	1	0
		—	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR
Initial va	alue :	Undefined	0	0	0	0	0	0	0
R/W	:	_	R/W						

P8DR is a 7-bit readable/writable register that stores output data for the port 8 pins (P8₆ to P8₀).

Bit 7 is reserved; it returns an undefined value if read, and cannot be modified.

P8DR is initialized to H'00 (bits 6 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 8 Register (PORT8)

Bit	:	7	6	5	4	3	2	1	0
		—	P86	P85	P84	P83	P82	P81	P80
Initial va	alue :	Undefined	*	*	*	*	*	*	*
R/W	:	—	R	R	R	R	R	R	R

Note: * Determined by state of pins P8₆ to P8₀.

PORT8 is a 7-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 8 pins ($P8_6$ to $P8_0$) must always be performed on P8DR.

Bit 7 is reserved; it returns an undefined value if read, and cannot be modified.

If a port 8 read is performed while P8DDR bits are set to 1, the P8DR values are read. If a port 8 read is performed while P8DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT8 contents are determined by the pin states, as P8DDR and P8DR are initialized. PORT8 retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0
		WAITPS	BREQOPS	CS167E	CS25E	ASOD		_	—
Initial valu	ie :	0	0	1	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the $\overline{\text{WAIT}}$ output pin. Set the WAITPS bit before setting the DDR bit clear to 0 and the WAITE bit in BCRL to 1.

Bit 7 WAITPS	Description	
0	\overline{WAIT} output is pin P8 ₆	(Initial value)
1	$\overline{\text{WAIT}}$ output is pin P5 ₃	

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. For details, see section 5.6, Port 5 and section 5.16, Port F.

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. For details, see section 5.7, Port 6 and section 5.17, Port G.

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. For details, see section 5.7, Port 6 and section 5.17, Port G.

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 5.16, Port F.

Bits 2 to 0—Reserved

5.9.3 Pin Functions

Port 8 pins also function as DMAC I/O pins ($\overline{\text{DREQ}}_0$, $\overline{\text{TEND}}_0$, $\overline{\text{DACK}}_0$, $\overline{\text{DREQ}}_1$, $\overline{\text{TEND}}_1$, and $\overline{\text{DACK}}_1$) and a bus control signal input pin ($\overline{\text{WAIT}}$). Port 8 pin functions are shown in table 5.16.

Table 5.16	Port 8 Pin Functions	

Pin	Selection Method ar	nd Pin Fu	nctions	5					
P8 ₆ /WAIT	The pin function is switched as shown below according to the combination of the operating mode and bits WAITE, WAITPS, and P86DDR.								
	Operating mode		Mod	es 4 to 6		Мо	Mode 7		
	[WAITE · WAITPS]	()		1	-	_		
	P86DDR	0	1	0	1	0	1		
	Pin function	P8 ₆ input pin	P8 ₆ output pin	t input pin	Setting pro- hibited	P8 ₆ input pin	P8 ₆ output pin		
	bit SAE1 in DMABCR	RH and bit P85DDR. 0			1				
P8₅/DACK₁	The pin function is switched as shown below according to the combination of bit SAE1 in DMABCRH and bit P85DDR.								
	•		•						
	P85DDR	0		1		_			
	P85DDR Pin function	0 P8₅ inpu	t pin F	1 P8₅ output pin	DAC	 CK₁ outpu	t pin		
	Pin function	P8₅ inpu		P8₅ output pin			·		
P8₄/DACK₀		P8₅ inpu vitched as	shown	P8₅ output pin below acco			·		
P8₄/DACK₀	Pin function The pin function is sw	P8₅ inpu vitched as	shown	P8₅ output pin below acco			·		
P8₄/DACK₀	Pin function The pin function is sw bit SAE0 in DMABCR	P8₅ inpu vitched as	shown P84DD	P8₅ output pin below acco		e combir	·		

Pin	Selection Method	and Pin Functio	ons					
P8 ₃ /TEND ₁	The pin function is switched as shown below according to the combination of bit TEE1 in the DMAC's DMATCR and bit P83DDR.							
	TEE1	()	1				
	P83DDR	0	1	_				
	Pin function	P8 ₃ input pin	P8 ₃ output pin	TEND₁ output pin				
P8 ₂ /TEND ₀	The pin function is s bit TEE0 in the DM/			ding to the combination of				
	TEE0	()	1				
	P82DDR	0	1	_				
	Pin function	P8 ₂ input pin	P8 ₂ output pin	\overline{TEND}_{0} output pin				
P8 ₁ /DREQ ₁		The pin function is switched as shown below ac						
	P81DDR	()	1				
	Pin function	P8₁ inp	out pin	P8 ₁ output pin				
			DREQ ₁ ir	input pin				
P8 ₀ /DREQ ₀	The pin function is a	witched as show	vn below accore	ding to bit P80DDR.				
	P80DDR	()	1				
	Pin function	P8 ₀ inp	out pin	P8 ₀ output pin				
				input pin				

5.10 Port 9

5.10.1 Overview

Port 9 is a 6-bit I/O port. Port 9 pins also function as interrupt input pins (\overline{IRQ}_2 , \overline{IRQ}_3 , \overline{IRQ}_4 , \overline{IRQ}_5 , \overline{IRQ}_6 , and \overline{IRQ}_7). When the IRQPAS bit is set to 1, inputs \overline{IRQ}_4 to \overline{IRQ}_7 are switched to P5₀ to P5₃. Port 9 pin functions are the same in all operating modes. Port 9 uses Schmitt-triggered input. Figure 5.9 shows the port 9 pin configuration.

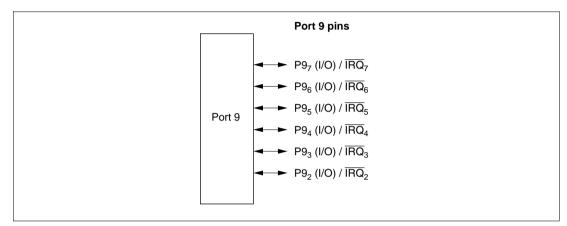


Figure 5.9 Port 9 Pin Functions

5.10.2 Register Configuration

Table 5.17 shows the port 9 register configuration.

Table 5.17Port 9 Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port 9 data direction register	P9DDR	W	H'00* ²	H'FEB8
Port 9 data register	P9DR	R/W	H'00* ²	H'FF68
Port 9 register	PORT9	R	Undefined	H'FF58
System control register	SYSCR	R/W	H'01	H'FF39

Notes: 1. Lower 16 bits of the address.

2. Value of bits 7 to 2.

Port 9 Data Direction Register (P9DDR)

Bit	:	7	6	5	4	3	2	1	0
		P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	—	—
Initial va	lue :	0	0	0	0	0	0	Undefined	Undefined
R/W	:	W	W	W	W	W	W	_	_

P9DDR is a 6-bit write-only register, the individual bits of which specify input or output for the pins of port 9. P2DDR cannot be read; if it is, an undefined value will be read. Bits 1 and 0 are reserved.

Setting a P9DDR bit to 1 makes the corresponding port 9 pin an output pin, while clearing the bit to 0 makes the pin an input pin.

P9DDR is initialized to H'00 (bits 7 to 2) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 9 Data Register (P9DR)

Bit	:	7	6	5	4	3	2	1	0
		P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	—	_
Initial va	alue :	0	0	0	0	0	0	Undefined	Undefined
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	_	_

P9DR is a 6-bit readable/writable register that stores output data for the port 9 pins (P9₇ to P9₂). Bits 1 and 0 are reserved; they return an undefined value if read, and cannot be modified. P9DR is initialized to H'00 (bits 7 to 2) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port 9 Register (PORT9)

Bit	:	7	6	5	4	3	2	1	0
		P97	P96	P95	P94	P93	P92		—
Initial va	alue :	*	*	*	*	*	*	Undefined	Undefined
R/W	:	R	R	R	R	R	R		—

Note: * Determined by state of pins P97 to P92.

PORT9 is a 6-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port 9 pins (P9₇ to P9₂) must always be performed on P9DR.

Bits 1 and 0 are reserved; they return an undefined value if read, and cannot be modified.

If a port 9 read is performed while P9DDR bits are set to 1, the P9DR values are read. If a port 9 read is performed while P9DDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORT9 contents are determined by the pin states, as P9DDR and P9DR are initialized. PORT9 retains its prior state in software standby mode.

System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
	Ī		—	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial val	lue :	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the \overline{IRQ}_4 to \overline{IRQ}_7 input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 3, Interrupt Controller, in the Hardware Manual.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 3, Interrupt Controller, in the Hardware Manual.

Bit 2—LWR Output Disable (LWROD): Enables or disables \overline{LWR} output. For details, see section 5.16, Port F.

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins \overline{IRQ}_4 to \overline{IRQ}_7 . \overline{IRQ}_4 to \overline{IRQ}_7 input is always performed from one of the ports.

Bit 1 IRQPAS	Description	
0	$P9_4$ to $P9_7$ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	(Initial value)
1	$P5_0$ to $P5_3$ used for \overline{IRQ}_4 to \overline{IRQ}_7 input	

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 16, RAM, in the Hardware Manual.

5.10.3 Pin Functions

Port 9 pins also function as interrupt input pins (\overline{IRQ}_2 , \overline{IRQ}_3 , \overline{IRQ}_4 , \overline{IRQ}_5 , \overline{IRQ}_6 , and \overline{IRQ}_7). Port 9 pin functions are shown in table 5.18.

Table 5.18	Port 9 Pin	Functions
-------------------	------------	-----------

Pin	Selection Method ar	nd Pin Functions						
P9 ₇ /IRQ ₇	The pin function is sw bits P97DDR and IRC	/itched as shown below acco QPAS.	rding to the combination of					
	P97DDR	0	1					
	Pin function	P97 input pin	P97 output pin					
		IRQ ₇ interru	pt input pin*					
	Note: * IRQ ₇ input wh	en IRQPAS = 0.						
P9 ₆ /IRQ ₆		The pin function is switched as shown below according to the combination of bits P96DDR and IRQPAS.						
	P96DDR	0	1					
	Pin function	P9 ₆ input pin	P9 ₆ output pin					
		IRQ ₆ interrupt input pin*						
	Note: * IRQ ₆ input wh	Note: $*\overline{IRQ}_6$ input when IRQPAS = 0.						
P9 ₅ /IRQ ₅		The pin function is switched as shown below according to the combination of bits P95DDR and IRQPAS.						
	P95DDR	0	1					
	Pin function	P9₅ input pin	P9₅ output pin					
		IRQ₅ interrupt input pin*						
	Note: * IRQ ₅ input wh	Note: $* \overline{IRQ}_5$ input when IRQPAS = 0.						
$P9_4/\overline{IRQ}_4$	The pin function is sw bits P94DDR and IRC	vitched as shown below acco QPAS.	rding to the combination of					
	P94DDR	0	1					
	Pin function	P9₄ input pin	P9₄ output pin					
		IRQ₄ interrupt input pin*						
	Note: * IRQ ₄ input wh	en IRQPAS = 0.						

Pin	Selection Method and Pin Functions							
P9 ₃ /IRQ ₃	The pin function is switched as shown below according to the combination of bits P93DDR and IRQPAS.							
	P93DDR	0	1					
	Pin function	P9 ₃ input pin	P93 output pin					
		IRQ ₃ interrupt input pin*						
	Note: $*\overline{IRQ}_{3}$ input when IRQPAS = 0.							
P9 ₂ /IRQ ₂	•	The pin function is switched as shown below according to the combination of bits P92DDR and IRQPAS.						
	P92DDR	0	1					
	Pin function	P9 ₂ input pin	P9 ₂ output pin					
	IRQ ₂ interrupt input pin*							
	Note: * IRQ ₂ input wh	Note: $*\overline{IRQ}_2$ input when IRQPAS = 0.						

5.11 Port A

5.11.1 Overview

Port A is an 8-bit I/O port. Port A pins also function as address bus outputs. The pin functions change according to the operating mode. The address output or port output function can be selected by means of bits A23E to A20E in PFCR1.

Port A has a built-in MOS input pull-up function that can be controlled by software. Pins PA_7 to PA_4 are Schmitt-triggered inputs.

Figure 5.10 shows the port A pin configuration.

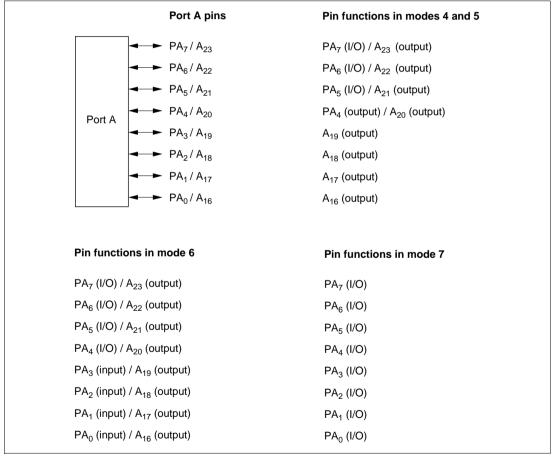


Figure 5.10 Port A Pin Functions

Register Configuration 5.11.2

Table 5.19 shows the port A register configuration.

Table 5.19 Port A Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port A data direction register	PADDR	W	H'00	H'FEB9
Port A data register	PADR	R/W	H'00	H'FF69
Port A register	PORTA	R	Undefined	H'FF59
Port A MOS pull-up control register	PAPCR	R/W	H'00	H'FF70
Port A open drain control register	PAODR	R/W	H'00	H'FF77
Port function control register 1	PFCR1	R/W	H'0F	H'FF45
Note: * Lower 16 bits of the address				

Lower 16 bits of the address.

Port A Data Direction Register (PADDR)

Bit	:	7	6	5	4	3	2	1	0
		PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PADDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port A. PADDR cannot be read; if it is, an undefined value will be read.

PADDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Port A Data Register (PADR)

Bit	:	7	6	5	4	3	2	1	0
		PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PADR is an 8-bit readable/writable register that stores output data for the port A pins (PA_7 to PA_0).

PADR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Register (PORTA)

Bit	:	7	6	5	4	3	2	1	0
		PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PA₇ to PA₀.

PORTA is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port A pins (PA_7 to PA_0) must always be performed on PADR.

If a port A read is performed while PADDR bits are set to 1, the PADR values are read. If a port A read is performed while PADDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTA contents are determined by the pin states, as PADDR and PADR are initialized. PORTA retains its prior state in software standby mode.

Port A MOS Pull-Up Control Register (PAPCR)

Bit	:	7	6	5	4	3	2	1	0
		PA7PCR	PA6PCR	PA5PCR	PA4PCR	PA3PCR	PA2PCR	PA1PCR	PA0PCR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PAPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port A on an individual bit basis.

All the bits are valid in modes 6 and 7, and bits 7 to 5 are valid in modes 4 and 5. When a PADDR bit is cleared to 0 (input port setting), setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PAPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port A Open Drain Control Register (PAODR)

Bit	:	7	6	5	4	3	2	1	0
		PA7ODR	PA6ODR	PA5ODR	PA40DR	PA3ODR	PA2ODR	PA10DR	PA0ODR
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PAODR is an 8-bit readable/writable register that controls whether PMOS is on or off for each port A pin (PA_7 to PA_0).

PAODR is valid only in mode 7. Do not PAODR bits to 1 in modes 4 to 6.

Setting a PAODR bit to 1 makes the corresponding port A pin an NMOS open-drain output, while clearing the bit to 0 makes the pin a CMOS output.

PAODR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port Function Control Register 1 (PFCR1)

Bit	:	7	6	5	4	3	2	1	0
		—	—	—	—	A23E	A22E	A21E	A20E
Initial va	alue :	0	0	0	0	1	1	1	1
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PFCR1 is an 8-bit readable/writable register that performs I/O port control. PFCR1 is initialized to H'0F by a reset, and in hardware standby mode.

Bits 7 to 4—Reserved: Only 0 should be written to these bits.

Bit 3—Address 23 Enable (A23E): Enables or disables address output 23 (A₂₃). This bit is valid in modes 4 to 6.

Bit 3 A23E	Description	
0	DR is output when PA7DDR = 1	
1	A_{23} is output when PA7DDR = 1	(Initial value)

Bit 2—Address 22 Enable (A22E): Enables or disables address output 22 (A₂₂). This bit is valid in modes 4 to 6.

Bit 2 A22E	Description	
0	DR is output when PA6DDR = 1	
1	A_{22} is output when PA6DDR = 1	(Initial value)

Bit 1—Address 21 Enable (A21E): Enables or disables address output 21 (A₂₁). This bit is valid in modes 4 to 6.

Bit 1 A21E	Description	
0	DR is output when PA5DDR = 1	
1	A_{21} is output when PA5DDR = 1	(Initial value)

Bit 0—Address 20 Enable (A20E): Enables or disables address output 20 (A_{20}). This bit is valid in modes 4 to 6.

Bit 0 A20E	Description	
0	DR is output when PA4DDR = 1	
1	A_{20} is output when PA4DDR = 1	(Initial value)

5.11.3 Pin Functions

Port A pins function as address outputs and I/O ports. Port A pin functions are shown in table 5.20.

Table 5.20Port A Pin Functions

Pin	Selection Method and Pin Functions								
PA ₇ /A ₂₃	The pin function is switched as shown below according to the combination of the operating mode and bits A23E and PA7DDR.								
	Operating mode		Modes	Mo	Mode 7				
	A23E		0 1			—			
	PA7DDR	0	1	0	1	0	1		
	Pin function	PA ₇ input pin	PA ₇ output pin	PA ₇ input pin	A ₂₃ output pin	PA ₇ input pin	PA ₇ output pin		
	<u>.</u>	1	1	1	1		1		

PA₆/A₂₂ The pin function is switched as shown below according to the combination of the operating mode and bits A22E and PA6DDR.

Operating mode		Modes	Mode 7				
A22E		0		1	—		
PA6DDR	0 1		0	1	0	1	
Pin function	PA ₆ input pin	PA ₆ output pin	PA ₆ input pin	A ₂₂ output pin	PA ₆ PA ₆ input pin output pin		

PA₅/A₂₁ The pin function is switched as shown below according to the combination of the operating mode and bits A21E and PA5DDR.

Operating mode	Modes 4 to 6 Mode 7						
A21E		0		1			
PA5DDR	0	1	0	1	0	1	
Pin function	PA₅ input pin	PA₅ output pin	PA₅ input pin	A ₂₁ output pin	PA₅ input pin	PA₅ output pin	

Pin	Selection Method and Pin Functions										
PA ₄ /A ₂₀		The pin function is switched as shown below according to the combination of the operating mode and bits A20E and PA4DDR.									
	Operating mode	Мос	des 4 a	nd 5	Mode 6		de 6	e 6		Mode 7	
	A20E	(C	1 0			1	-	_		
	PA4DDR	0	1	_	0	1	0	1	0	1	
	Pin function	Setting pro- hibited	output	A ₂₀ output pin	PA ₄ input pin	PA₄ output pin	PA₄ input pin	A ₂₀ output pin	PA₄ input pin	PA₄ output pin	
PA ₃ /A ₁₉ PA ₂ /A ₁₈	The pin funct the operating					ow acco	rding to	o the co	mbinati	on of	
PA ₁ /A ₁₇ PA ₀ /A ₁₆	Operating mode	Mod 4 and			Mode	6		Mo	lode 7		
	PAnDDR		-	0		1		0		1	
	Pin function	Addr output		PA _n input p			n in	PA _n input pin		PA _n output pin	
	(n = 0 to 3) (m = 16 to 19)					1		1		

5.11.4 MOS Input Pull-Up Function

Port A has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used by pins PA_7 to PA_5 in modes 4 and 5, and by all pins in modes 6 and 7. MOS input pull-up can be specified as on or off on an individual bit basis.

When a PADDR bit is cleared to 0, setting the corresponding PAPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 5.21 summarizes the MOS input pull-up states.

Table 5.21	MOS Input Pull-Up States (Port A)
------------	-----------------------------------

Modes		Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
6, 7	PA ₇ to PA ₀	Off	Off	On/off	On/off
4, 5	PA_7 to PA_5			On/off	On/off
	PA ₄ to PA ₀			Off	Off

Legend

Off: MOS input pull-up is always off.

On/off: On when PADDR = 0 and PAPCR = 1; otherwise off.

5.12 Port B

5.12.1 Overview

Port B is an 8-bit I/O port. Port B has an address bus output function, and the pin functions change according to the operating mode.

Port B has a built-in MOS input pull-up function that can be controlled by software.

Figure 5.11 shows the port B pin configuration.

	Port B pins	Pin functions in modes 4 and 5			
↓ ↓	► PB ₇ / A ₁₅	A ₁₅ (output)			
+ +	► PB ₆ / A ₁₄	A ₁₄ (output)			
▲ ▶	► PB ₅ / A ₁₃	A ₁₃ (output)			
	► PB ₄ / A ₁₂	A ₁₂ (output)			
Port B	► PB ₃ / A ₁₁	A ₁₁ (output)			
▲ →	► PB ₂ / A ₁₀	A ₁₀ (output)			
~	► PB ₁ / A ₉	A ₉ (output)			
A b	► PB ₀ / A ₈	A ₈ (output)			
Pin functions in	mode 6	Pin functions in mode 7			
PB ₇ (input) / A ₁₅ (output)	PB ₇ (I/O)			
PB ₆ (input) / A ₁₄ (output)	PB ₆ (I/O)			
PB ₅ (input) / A ₁₃ (output)	PB ₅ (I/O)			
PB ₄ (input) / A ₁₂ (output)	PB ₄ (I/O)			
PB ₃ (input) / A ₁₁ (output)	PB ₃ (I/O)			
PB ₂ (input) / A ₁₀ (output)	PB ₂ (I/O) PB ₁ (I/O)			
PB ₁ (input) / A ₉ (e	output)				
PB ₀ (input) / A ₈ (e	output)	PB ₀ (I/O)			

5.12.2 Register Configuration

Table 5.22 shows the port B register configuration.

Table 5.22Port B Registers

Abbreviation	R/W	Initial Value	Address*
PBDDR	W	H'00	H'FEBA
PBDR	R/W	H'00	H'FF6A
PORTB	R	Undefined	H'FF5A
PBPCR	R/W	H'00	H'FF71
	PBDDR PBDR PORTB	PBDDRWPBDRR/WPORTBR	PBDDRWH'00PBDRR/WH'00PORTBRUndefined

Note: * Lower 16 bits of the address.

Port B Data Direction Register (PBDDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PBDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port B. PBDDR cannot be read; if it is, an undefined value will be read.

PBDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

• Modes 4 and 5

The corresponding port B pins are address outputs irrespective of the value of the PBDDR bits.

• Mode 6

Setting a PBDDR bit to 1 makes the corresponding port B pin an address output, while clearing the bit to 0 makes the pin an input port.

• Mode 7

Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Port B Data Register (PBDR)

Bit	:	7	6	5	4	3	2	1	0
		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBDR is an 8-bit readable/writable register that stores output data for the port B pins (PB_7 to PB_0). PBDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port B Register (PORTB)

Bit	:	7	6	5	4	3	2	1	0
		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PB₇ to PB₀.

PORTB is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port B pins (PB_7 to PB_0) must always be performed on PBDR.

If a port B read is performed while PBDDR bits are set to 1, the PBDR values are read. If a port B read is performed while PBDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTB contents are determined by the pin states, as PBDDR and PBDR are initialized. PORTB retains its prior state in software standby mode.

Port B MOS Pull-Up Control Register (PBPCR)

Bit	:	7	6	5	4	3	2	1	0
		PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
Initial valu	ue:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PBPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port B on an individual bit basis.

When a PBDDR bit is cleared to 0 (input port setting) in mode 6 or 7, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PBPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

5.12.3 Pin Functions

Modes 4 and 5: In modes 4 and 5, port B pins are automatically designated as address outputs.

Port B pin functions in modes 4 and 5 are shown in figure 5.12.

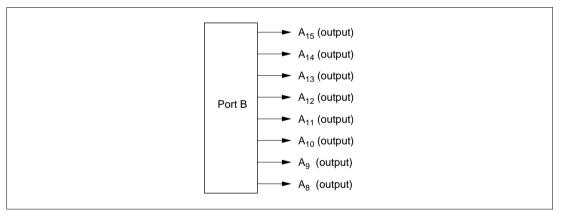
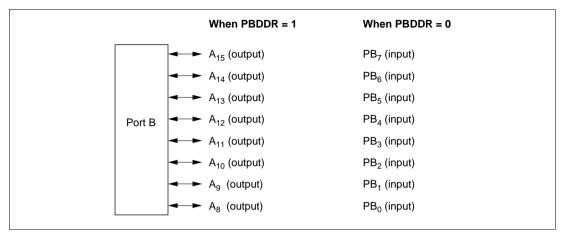



Figure 5.12 Port B Pin Functions (Modes 4 and 5)

Mode 6: In mode 6, port B pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an address output, while clearing the bit to 0 makes the pin an input port.

Port B pin functions in mode 6 are shown in figure 5.13

Mode 7: In mode 7, port B pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PBDDR bit to 1 makes the corresponding port B pin an output port, while clearing the bit to 0 makes the pin an input port.

Port B pin functions in mode 7 are shown in figure 5.14.

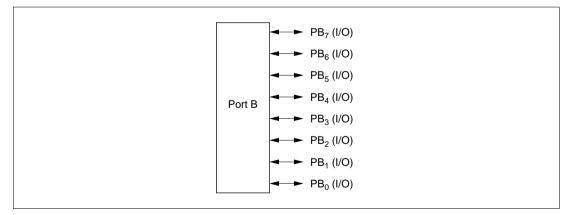


Figure 5.14 Port B Pin Functions (Mode 7)

5.12.4 MOS Input Pull-Up Function

Port B has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 6 and 7, and can be specified as on or off on an individual bit basis.

When a PBDDR bit is cleared to 0 in mode 6 or 7, setting the corresponding PBPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 5.23 summarizes the MOS input pull-up states.

Table 5.23 MOS Input Pull-Up States (Port B)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4, 5	Off	Off	Off	Off
6, 7	_		On/off	On/off

Legend

Off: MOS input pull-up is always off.

On/off: On when PBDDR = 0 and PBPCR = 1; otherwise off.

5.13 Port C

5.13.1 Overview

Port C is an 8-bit I/O port. Port C has an address bus output function, and the pin functions change according to the operating mode.

Port C has a built-in MOS input pull-up function that can be controlled by software.

Figure 5.15 shows the port C pin configuration.

	Port C pins	Pin functions in modes 4 and 5	
	PC ₇ / A ₇	A ₇ (output)	
	PC ₆ / A ₆	A ₆ (output)	
	\blacksquare PC_7 / A_7 A_7 (output)		
	 PC₄ / A₄ 	A ₄ (output)	
	PC ₃ / A ₃	A ₃ (output)	
		A ₂ (output)	
	PC ₁ / A ₁	A ₁ (output)	
↓ ↓	\blacktriangleright PC ₀ / A ₀	A ₀ (output)	
Pin functions in	mode 6	Pin functions in mode 7	
PC ₇ (input) / A ₇ (o	output)	PC ₇ (I/O)	
PC ₆ (input) / A ₆ (o	output)	PC ₆ (I/O)	
PC ₅ (input) / A ₅ (o	output)	PC ₅ (I/O)	
PC ₄ (input) / A ₄ (o	output)	PC ₄ (I/O)	
PC_3 (input) / A_3 (o	output)	PC ₃ (I/O)	
PC ₂ (input) / A ₂ (o	output)	PC ₂ (I/O)	
PC ₁ (input) / A ₁ (o	output)	PC ₁ (I/O)	
PC ₀ (input) / A ₀ (o	output)	PC ₀ (I/O)	

Figure 5.15 Port C Pin Functions

5.13.2 Register Configuration

Table 5.24 shows the port C register configuration.

Table 5.24 Port C Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port C data direction register	PCDDR	W	H'00	H'FEBB
Port C data register	PCDR	R/W	H'00	H'FF6B
Port C register	PORTC	R	Undefined	H'FF5B
Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF72

Note: * Lower 16 bits of the address.

Port C Data Direction Register (PCDDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial val	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PCDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port C. PCDDR cannot be read; if it is, an undefined value will be read.

PCDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the address output pins retain their output state or become high-impedance when a transition is made to software standby mode.

• Modes 4 and 5

The corresponding port C pins are address outputs irrespective of the value of the PCDDR bits.

• Mode 6

Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

• Mode 7

Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Port C Data Register (PCDR)

Bit	:	7	6	5	4	3	2	1	0
		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCDR is an 8-bit readable/writable register that stores output data for the port C pins (PC₇ to PC₀).

PCDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port C Register (PORTC)

Bit	:	7	6	5	4	3	2	1	0
		PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Initial va	lue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PC₇ to PC₀.

PORTC is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port C pins (PC_7 to PC_0) must always be performed on PCDR.

If a port C read is performed while PCDDR bits are set to 1, the PCDR values are read. If a port C read is performed while PCDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTC contents are determined by the pin states, as PCDDR and PCDR are initialized. PORTC retains its prior state in software standby mode.

Port C MOS Pull-Up Control Register (PCPCR)

Bit	:	7	6	5	4	3	2	1	0
		PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
Initial valu	ue:	0	0	0	0	0	0	0	0
R/W	:	R/W							

PCPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port C on an individual bit basis.

When a PCDDR bit is cleared to 0 (input port setting) in mode 6 or 7, setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PCPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

5.13.3 Pin Functions

Modes 4 and 5: In modes 4 and 5, port C pins are automatically designated as address outputs.

Port C pin functions in modes 4 and 5 are shown in figure 5.16.

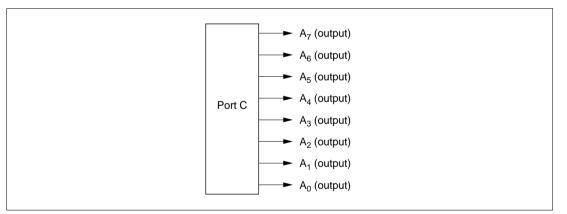
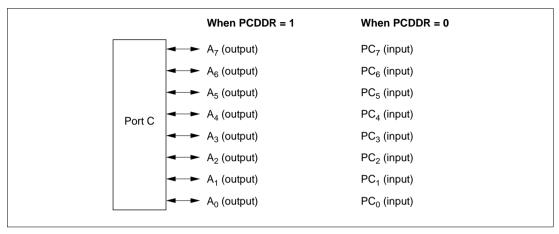



Figure 5.16 Port C Pin Functions (Modes 4 and 5)

Mode 6: In mode 6, port C pins function as address outputs or input ports. Input or output can be specified on an individual bit basis. Setting a PCDDR bit to 1 makes the corresponding port C pin an address output, while clearing the bit to 0 makes the pin an input port.

Port C pin functions in mode 6 are shown in figure 5.17.

Mode 7: In mode 7, port C pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PCDDR bit to 1 makes the corresponding port C pin an output port, while clearing the bit to 0 makes the pin an input port.

Port C pin functions in mode 7 are shown in figure 5.18.

Figure 5.18 Port C Pin Functions (Mode 7)

5.13.4 MOS Input Pull-Up Function

Port C has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 6 and 7, and can be specified as on or off on an individual bit basis.

When a PCDDR bit is cleared to 0 in mode 6 or 7, setting the corresponding PCPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 5.25 summarizes the MOS input pull-up states.

Table 5.25 MOS Input Pull-Up States (Port C)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4, 5	Off	Off	Off	Off
6, 7			On/off	On/off

Legend

Off: MOS input pull-up is always off.

On/off: On when PCDDR = 0 and PCPCR = 1; otherwise off.

5.14 Port D

5.14.1 Overview

Port D is an 8-bit I/O port. Port D has a data bus I/O function, and the pin functions change according to the operating mode.

Port D has a built-in MOS input pull-up function that can be controlled by software.

Figure 5.19 shows the port D pin configuration.

	Port D pins	Pin functions in modes 4 to 6	
	← PD ₇ / D ₁₅	D ₁₅ (I/O)	
	→ PD ₆ / D ₁₄	D ₁₄ (I/O)	
	→ PD ₅ / D ₁₃	D ₁₃ (I/O)	
Port D	→ PD ₄ / D ₁₂	D ₁₂ (I/O)	
	→ PD ₃ / D ₁₁	D ₁₁ (I/O)	
	→ PD ₂ / D ₁₀	D ₁₀ (I/O)	
	→ PD ₁ / D ₉	D ₉ (I/O)	
	\blacksquare PD ₀ / D ₈	D ₈ (I/O)	
		Pin functions in mode 7	
		PD ₇ (I/O)	
		PD ₆ (I/O)	
		PD ₅ (I/O)	
		PD ₄ (I/O)	
		PD ₃ (I/O)	
		PD ₂ (I/O)	
		PD ₁ (I/O)	

5.14.2 Register Configuration

Table 5.26 shows the port D register configuration.

Table 5.26 Port D Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port D data direction register	PDDDR	W	H'00	H'FEBC
Port D data register	PDDR	R/W	H'00	H'FF6C
Port D register	PORTD	R	Undefined	H'FF5C
Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FF73

Note: * Lower 16 bits of the address.

Port D Data Direction Register (PDDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PDDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port D. PDDDR cannot be read; if it is, an undefined value will be read.

PDDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

• Modes 4 to 6

The input/output direction specification by PDDDR is ignored, and port D is automatically designated for data I/O.

• Mode 7

Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D Data Register (PDDR)

Bit	:	7	6	5	4	3	2	1	0
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDDR is an 8-bit readable/writable register that stores output data for the port D pins (PD₇ to PD₀).

PDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port D Register (PORTD)

Bit	:	7	6	5	4	3	2	1	0
		PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PD₇ to PD₀.

PORTD is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port D pins (PD_7 to PD_0) must always be performed on PDDR.

If a port D read is performed while PDDDR bits are set to 1, the PDDR values are read. If a port D read is performed while PDDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTD contents are determined by the pin states, as PDDDR and PDDR are initialized. PORTD retains its prior state in software standby mode.

Port D MOS Pull-Up Control Register (PDPCR)

Bit	:	7	6	5	4	3	2	1	0
		PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
Initial val	ue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PDPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port D on an individual bit basis.

When a PDDDR bit is cleared to 0 (input port setting) in mode 7, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PDPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

5.14.3 Pin Functions

Modes 4 to 6: In modes 4 to 6, port D pins are automatically designated as data I/O pins.

Port D pin functions in modes 4 to 6 are shown in figure 5.20.

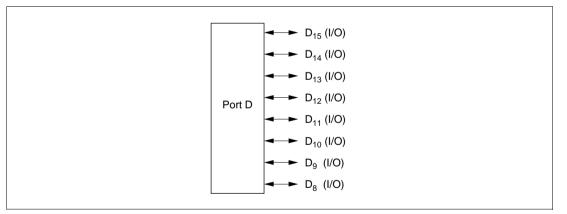
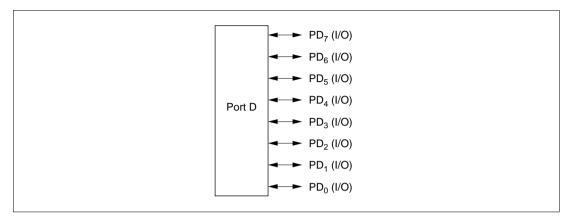



Figure 5.20 Port D Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port D pins function as I/O ports. Input or output can be specified for each pin on an individual bit basis. Setting a PDDDR bit to 1 makes the corresponding port D pin an output port, while clearing the bit to 0 makes the pin an input port.

Port D pin functions in mode 7 are shown in figure 5.21.

Figure 5.21 Port D Pin Functions (Mode 7)

5.14.4 MOS Input Pull-Up Function

Port D has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in mode 7, and can be specified as on or off on an individual bit basis.

When a PDDDR bit is cleared to 0 in mode 7, setting the corresponding PDPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 5.27 summarizes the MOS input pull-up states.

Table 5.27 MOS Input Pull-Up States (Port D)

Modes	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
4 to 6	Off	Off	Off	Off
7	_		On/off	On/off

Legend

Off: MOS input pull-up is always off.

On/off: On when PDDDR = 0 and PDPCR = 1; otherwise off.

5.15 Port E

5.15.1 Overview

Port E is an 8-bit I/O port. Port E has a data bus I/O function, and the pin functions change according to the operating mode and whether 8-bit or 16-bit bus mode is selected.

Port E has a built-in MOS input pull-up function that can be controlled by software.

Figure 5.22 shows the port E pin configuration.

	Port E pins	Pin functions in modes 4 to 6	
	\blacksquare PE ₇ / D ₇	PE ₇ (I/O) / D ₇ (I/O)	
	→ PE ₆ / D ₆	PE ₆ (I/O) / D ₆ (I/O)	
	→ PE ₅ / D ₅	PE ₅ (I/O) / D ₅ (I/O)	
Port E	✓ PE ₄ / D ₄	PE ₄ (I/O) / D ₄ (I/O)	
	✓ PE ₃ / D ₃	PE ₃ (I/O) / D ₃ (I/O)	
	\blacksquare PE ₂ /D ₂	PE ₂ (I/O) / D ₂ (I/O)	
	→ PE ₁ / D ₁	PE ₁ (I/O) / D ₁ (I/O)	
	\blacksquare PE ₀ / D ₀	PE ₀ (I/O) / D ₀ (I/O)	
		Pin functions in mode 7	
		PE ₇ (I/O)	
		PE ₆ (I/O)	
		PE ₅ (I/O)	
		PE ₄ (I/O)	
		PE ₃ (I/O)	
		PE ₂ (I/O)	
		PE ₁ (I/O)	
		PE ₀ (I/O)	

5.15.2 Register Configuration

Table 5.28 shows the port E register configuration.

Table 5.28 Port E Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port E data direction register	PEDDR	W	H'00	H'FEBD
Port E data register	PEDR	R/W	H'00	H'FF6D
Port E register	PORTE	R	Undefined	H'FF5D
Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FF74

Note: * Lower 16 bits of the address.

Port E Data Direction Register (PEDDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PEDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port E. PEDDR cannot be read; if it is, an undefined value will be read.

PEDDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

• Modes 4 to 6

When 8-bit bus mode has been selected, port E pins function as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode has been selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

For details of 8-bit and 16-bit bus modes, see section 4, Bus Controller.

• Mode 7

Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E Data Register (PEDR)

Bit	:	7	6	5	4	3	2	1	0
		PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEDR is an 8-bit readable/writable register that stores output data for the port E pins (PE₇ to PE₀).

PEDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port E Register (PORTE)

Bit	:	7	6	5	4	3	2	1	0
		PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PE7 to PE0.

PORTE is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port E pins (PE_7 to PE_0) must always be performed on PEDR.

If a port E read is performed while PEDDR bits are set to 1, the PEDR values are read. If a port E read is performed while PEDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTE contents are determined by the pin states, as PEDDR and PEDR are initialized. PORTE retains its prior state in software standby mode.

Port E MOS Pull-Up Control Register (PEPCR)

Bit	:	7	6	5	4	3	2	1	0
		PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
Initial va	alue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PEPCR is an 8-bit readable/writable register that controls the MOS input pull-up function incorporated into port E on an individual bit basis.

When a PEDDR bit is cleared to 0 (input port setting) in mode 4, 5, or 6 with 8-bit bus mode selected, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for the corresponding pin.

PEPCR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

5.15.3 Pin Functions

Modes 4 to 6: In modes 4 to 6, when 8-bit access is designated and 8-bit bus mode is selected, port E pins are automatically designated as I/O ports. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

When 16-bit bus mode is selected, the input/output direction specification by PEDDR is ignored, and port E is designated for data I/O.

Port E pin functions in modes 4 to 6 are shown in figure 5.23.

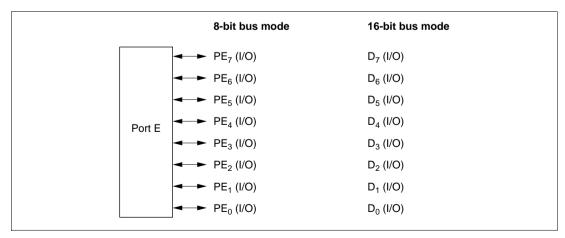
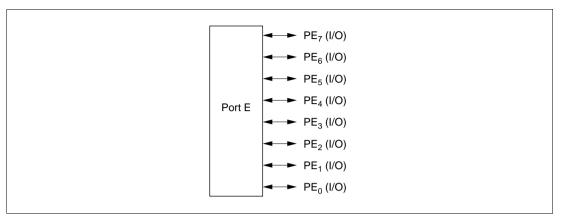



Figure 5.23 Port E Pin Functions (Modes 4 to 6)

Mode 7: In mode 7, port E pins function as I/O ports. Input or output can be specified for each pin on a bit-by-bit basis. Setting a PEDDR bit to 1 makes the corresponding port E pin an output port, while clearing the bit to 0 makes the pin an input port.

Port E pin functions in mode 7 are shown in figure 5.24.

5.15.4 MOS Input Pull-Up Function

Port E has a built-in MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 4, 5, and 6 when 8-bit bus mode is selected, or in mode 7, and can be specified as on or off on an individual bit basis.

When a PEDDR bit is cleared to 0 in mode 4, 5, or 6 when 8-bit bus mode is selected, or in mode 7, setting the corresponding PEPCR bit to 1 turns on the MOS input pull-up for that pin.

The MOS input pull-up function is in the off state after a reset, and in hardware standby mode. The prior state is retained in software standby mode.

Table 5.29 summarizes the MOS input pull-up states.

Table 5.29 MOS Input Pull-Up States (Port E)

Modes		Reset	Hardware Standby Mode	Software Standby Mode	In Other Operations
7		Off	Off	On/off	On/off
4 to 6	8-bit bus				
	16-bit bus			Off	Off

Legend

Off: MOS input pull-up is always off.

On/off: On when PEDDR = 0 and PEPCR = 1; otherwise off.

5.16 Port F

5.16.1 Overview

Port F is an 8-bit I/O port. Port F pins also function as bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{LCAS} , \overline{BREQO} , \overline{BREQ} , and \overline{BACK}) and the system clock (\emptyset) output pin. The \overline{AS} , \overline{LWR} , and \overline{BREQO} output pins can be switched by means of settings in PFCR2 and SYSCR.

Figure 5.25 shows the port F pin configuration.

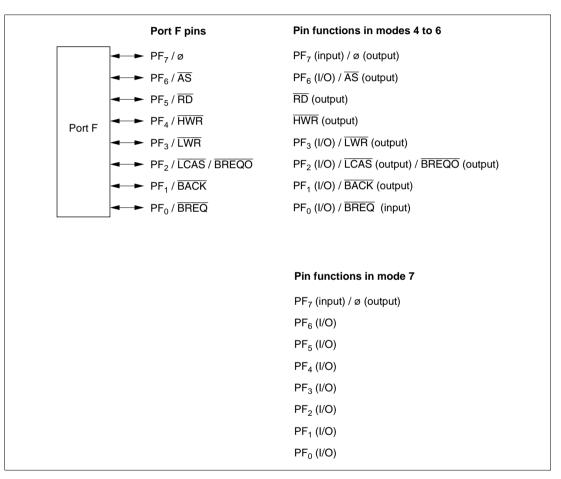


Figure 5.25 Port F Pin Functions

5.16.2 Register Configuration

Table 5.30 shows the port F register configuration.

Table 5.30Port F Registers

Name	Abbreviation	R/W	Initial Value	Address*1
Port F data direction register	PFDDR	W	H'80/H'00*2	H'FEBE
Port F data register	PFDR	R/W	H'00	H'FF6E
Port F register	PORTF	R	Undefined	H'FF5E
Port function control register 2	PFCR2	R/W	H'30	H'FFAC
System control register	SYSCR	R/W	H'01	H'FF39

Notes: 1. Lower 16 bits of the address.

2. Initial value depends on the mode.

Port F Data Direction Register (PFDDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to	6								
Initial valu	ie :	1	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W
Mode 7									
Initial valu	ie :	0	0	0	0	0	0	0	0
R/W	:	W	W	W	W	W	W	W	W

PFDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port F. PFDDR cannot be read; if it is, an undefined value will be read.

PFDDR is initialized by a reset, and in hardware standby mode, to H'80 in modes 4 to 6, and to H'00 in mode 7. It retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Port F Data Register (PFDR)

Bit	:	7	6	5	4	3	2	1	0
		PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR
Initial va	lue :	0	0	0	0	0	0	0	0
R/W	:	R/W							

PFDR is an 8-bit readable/writable register that stores output data for the port F pins (PF₇ to PF₀).

PFDR is initialized to H'00 by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port F Register (PORTF)

Bit	:	7	6	5	4	3	2	1	0
		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
Initial va	alue :	*	*	*	*	*	*	*	*
R/W	:	R	R	R	R	R	R	R	R

Note: * Determined by state of pins PF7 to PF0.

PORTF is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port F pins (PF_7 to PF_0) must always be performed on PFDR.

If a port F read is performed while PFDDR bits are set to 1, the PFDR values are read. If a port F read is performed while PFDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTF contents are determined by the pin states, as PFDDR and PFDR are initialized. PORTF retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0
		WAITPS	BREQOPS	CS167E	CS25E	ASOD	_	—	—
Initial va	alue :	0	0	1	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R

Bit 7—WAIT Pin Select (WAITPS): Selects the WAIT input pin. For details, see section 5.6, Port 5.

Bit 6—BREQO Pin Select (BREQOPS): Seelects the BREQO output pin. Set the BREQOPS bit before setting the BREQOE bit in BCRL to 1.

Bit 6 BREQOPS	Description	
0	BREQO output pin PF ₂	(Initial value)
1	BREQO output pin P5 ₃	

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. For details, see section 5.7, Port 6 and section 5.17, Port G.

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. For details, see section 5.7, Port 6 and section 5.17, Port G.

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. This bit is valid in modes 4 to 6.

Bit 3 ASOD Description 0 PF₆ is used as AS output pin (Initial value) 1 PF₆ is designated as I/O port, and does not function as AS output pin

Bits 2 to 0—Reserved

System Control Register (SYSCR)

Bit	:	7	6	5	4	3	2	1	0
			—	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME
Initial va	lue :	0	0	0	0	0	0	0	1
R/W	:	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W

SYSCR is an 8-bit readable/writable register that selects the interrupt control mode, controls the \overline{LWR} pin, switches the \overline{IRQ}_4 to \overline{IRQ}_7 input pins, and selects the detected edge for NMI. SYSCR is initialized to H'01 by a reset, and in hardware standby mode. It is not initialized in software standby mode.

Bits 5 and 4—Interrupt Control Mode 1 and 0 (INTM1, INTM0): These bits select either of two interrupt control modes for the interrupt controller. For details, see section 3, Interrupt Controller, in the Hardware Manual.

Bit 3—NMI Edge Select (NMIEG): Selects the input edge for the NMI pin. For details, see section 3, Interrupt Controller, in the Hardware Manual.

Bit 2—LWR Output Disable (LWROD): Enables or disables \overline{LWR} output. This bit is valid in modes 4 to 6.

Bit 2 LWROD	Description	
0	$PF_{\mathfrak{z}}$ is designated as \overline{LWR} output pin	(Initial value)
1	$PF_{\scriptscriptstyle 3}$ is designated as I/O port, and does not function as \overline{LWR} output	ut pin

Bit 1—IRQ Port Switching Select (IRQPAS): Selects switching of input pins for \overline{IRQ}_4 to \overline{IRQ}_7 . For details, see section 5.6, Port 5.

Bit 0—RAM Enable (RAME): Enables or disables on-chip RAM. For details, see section 16, RAM, in the Hardware Manual.

5.16.3 Pin Functions

Port F pins also function as bus control signal input/output pins (\overline{AS} , \overline{RD} , \overline{HWR} , \overline{LWR} , \overline{LCAS} , \overline{BREQO} , \overline{BREQ} , and \overline{BACK}) and the system clock (\emptyset) output pin. The pin functions differ between modes 4 to 6, and mode 7. Port F pin functions are shown in table 5.31.

Table 5.31 Port F Pin Functions

Pin	Selection Method and Pin Functions							
PF ₇ /ø	The pin function is switched as shown below according to bit PF7DDR.							
	PF7DDR	0	1					
	Pin function	PF ₇ input pin	ø output pin					

PF₆/AS The pin function is switched as shown below according to the operating mode, bit PF6DDR, and bit ASOD in PFCR2.

Operating Mode		Modes 4 to 6	Mode 7			
ASOD	0		1	—		
PF6DDR	—	0	1	0	1	
Pin function	AS output pin	PF ₆ input pin	PF ₆ output pin	PF₅ input pin	PF ₆ output pin	

 PF_{s}/\overline{RD} The pin function is switched as shown below according to the operating mode and bit PF5DDR.

Operating Mode	Modes 4 to 6	Mode 7				
PF5DDR	—	0	1			
Pin function	RD output pin	$PF_{\mathfrak{s}}$ input pin	$PF_{\mathfrak{s}}$ output pin			

 PF₄/HWR
 The pin function is switched as shown below according to the operating mode and bit PF4DDR.

 Operating
 Modes 4 to 6
 Mode 7

 Mode
 Mode 7
 Mode 7

Mode			
PF4DDR	_	0	1
Pin function	HWR output pin	PF ₄ input pin	PF ₄ output pin

Pin Selection Method and Pin Functions

PF₃/LWR

The pin function is switched as shown below according to the operating mode, bit PF3DDR, and bit LWROD in SYSCR.

Operating Mode		Modes 4 to 6	3	Mode 7					
LWROD	0		1	<u> </u>					
PF3DDR	_	0 1		0	1				
Pin function	LWR output pin	PF ₃ PF ₃ input pin output p		PF₃ input pin	PF₃ output pin				

PF₂/LCAS/ BREQO The pin function is switched as shown below according to the combination of the operating mode, and bits RMTS2 to RMTS0, BREQOE, ABW5 to ABW2, BREQOPS, and PF2DDR.

Operating Mode		Modes	4 to 6		Mode 7		
[DRAM space setting] · [16-bit access setting]		0		1	_		
[BREQOE BREQOPS]	0		1		—		
PF2DDR	0	1		—	0	1	
Pin function	PF ₂ input pin	PF ₂ output pin	BREQO output pin	LCAS output pin	PF ₂ input pin	PF ₂ output pin	

PF₁/BACK The pin function is switched as shown below according to the combination of the operating mode, and bits BRLE and PF1DDR.

Operating Mode		Modes 4 to 6	Mode 7			
BRLE	(0	1	—		
PF1DDR	0	1	—	0	1	
Pin function	PF₁ input pin	PF₁ output pin	BACK output pin	PF₁ input pin	PF₁ output pin	

Pin	Selection Method and Pin Functions								
PF₀/BREQ	The pin function is switched as shown below according to the combination of the operating mode, and bits BRLE and PF0DDR.								
	Operating Mode		Modes 4 to 6	Mode 7					
	BRLE		0	1	—				
	PF0DDR	0	1	—	0	1			
	Pin function	PF₀ input pin	PF₀ output pin	BREQ input pin	PF₀ input pin	PF₀ output pin			

5.17 **Port G**

5.17.1 Overview

Port G is a 5-bit I/O port. Port G pins also function as bus control signal output pins ($\overline{CS0}$ to $\overline{CS3}$, and \overline{CAS}). Enabling or disabling of $\overline{CS_1}$ to $\overline{CS_2}$ output can be changed by a setting in PFCR2.

Figure 5.26 shows the port G pin configuration.

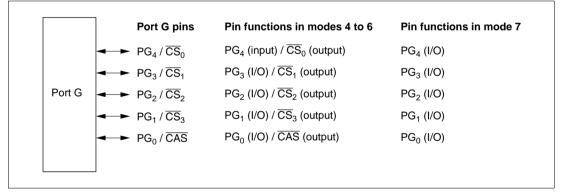


Figure 5.26 Port G Pin Functions

5.17.2 Register Configuration

Table 5.32 shows the port G register configuration.

Table 5.32 Port G Registers

Name	Abbreviation	R/W	Initial Value* ²	Address*1
Port G data direction register	PGDDR	W	H'10/H'00* ³	H'FEBF
Port G data register	PGDR	R/W	H'00	H'FF6F
Port G register	PORTG	R	Undefined	H'FF5F
Port function control register 2	PFCR2	R/W	H'30	H'FFAC

Notes: 1. Lower 16 bits of the address.

- 2. Value of bits 4 to 0.
- 3. Initial value depends on the mode.

Port G Data Direction Register (PGDDR)

Bit	:	7	6	5	4	3	2	1	0
		_	—	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
Modes 4 a	and 5								
Initial va	alue :	Undefined	Undefined	Undefined	1	0	0	0	0
R/W	:	—	—	—	W	W	W	W	W
Modes 6 a	and 7								
Initial va	alue :	Undefined	Undefined	Undefined	0	0	0	0	0
R/W	:	—	—	—	W	W	W	W	W

PGDDR is an 8-bit write-only register, the individual bits of which specify input or output for the pins of port G. PGDDR cannot be read, and bits 7 to 5 are reserved. If PGDDR is read, an undefined value will be read.

The PG4DDR bit is initialized by a reset, and in hardware standby mode, to 1 in modes 4 and 5, and to 0 in modes 6 and 7. PGDDR retains its prior state in software standby mode. The OPE bit in SBYCR is used to select whether the bus control output pins retain their output state or become high-impedance when a transition is made to software standby mode.

Port G Data Register (PGDR)

Bit	:	7	6	5	4	3	2	1	0
		—	—	—	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR
Initial va	alue :	Undefined	Undefined	Undefined	0	0	0	0	0
R/W	:	_	—	—	R/W	R/W	R/W	R/W	R/W

PGDR is an 8-bit readable/writable register that stores output data for the port G pins (PG₄ to PG₀).

Bits 7 to 5 are reserved; they return an undefined value if read, and cannot be modified.

PGDR is initialized to H'00 (bits 4 to 0) by a reset, and in hardware standby mode. It retains its prior state in software standby mode.

Port G Register (PORTG)

Bit	:	7	6	5	4	3	2	1	0
		_	—	—	PG4	PG3	PG2	PG1	PG0
Initial va	alue :	Undefined	Undefined	Undefined	*	*	*	*	*
R/W	:	_	_	_	R	R	R	R	R

Note: * Determined by state of pins PG₄ to PG₀.

PORTG is an 8-bit read-only register that shows the pin states. It cannot be written to. Writing of output data for the port G pins (PG_4 to PG_0) must always be performed on PGDR.

Bits 7 to 5 are reserved; they return an undefined value if read, and cannot be modified.

If a port G read is performed while PGDDR bits are set to 1, the PGDR values are read. If a port G read is performed while PGDDR bits are cleared to 0, the pin states are read.

After a reset and in hardware standby mode, PORTG contents are determined by the pin states, as PGDDR and PGDR are initialized. PORTG retains its prior state in software standby mode.

Port Function Control Register 2 (PFCR2)

Bit	:	7	6	5	4	3	2	1	0
		WAITPS	BREQOPS	CS167E	CS25E	ASOD		—	
Initial va	lue :	0	0	1	1	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R	R	R

PFCR2 is an 8-bit readable/writable register that performs I/O port control. PFCR2 is initialized to H'30 by a reset, and in hardware standby mode.

Bit 7—WAIT Pin Select (WAITPS): Selects the $\overline{\text{WAIT}}$ input pin. For details, see section 5.6, Port 5.

Bit 6—BREQO Pin Select (BREQOPS): Selects the BREQO output pin. For details, see section 5.6, Port 5.

Bit 5—CS167 Enable (CS167E): Enables or disables \overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output. Change the CS167E setting only when the DDR bits are cleared to 0.

Bit 5 CS167E	Description	
0	\overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output disabled (can be used as I/O ports)	
1	\overline{CS}_1 , \overline{CS}_6 , and \overline{CS}_7 output enabled	(Initial value)

Bit 4—CS25 Enable (CS25E): Enables or disables \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output. Change the CS25E setting only when the DDR bits are cleared to 0.

Bit 4 CS25E	Description	
0	\overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output disabled (can be used as	s I/O ports)
1	\overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4 , and \overline{CS}_5 output enabled	(Initial value)

Bit 3—AS Output Disable (ASOD): Enables or disables \overline{AS} output. For details, see section 5.16, Port F.

Bits 2 to 0—Reserved

5.17.3 Pin Functions

Port G pins also function as bus control signal output pins ($\overline{CS0}$ to $\overline{CS3}$, and \overline{CAS}). The pin functions are different in mode 7, and modes 4 to 6. Port G pin functions are shown in table 5.33.

Table 5.33Port G Pin Functions

Pin Selection Method and Pin Functions

PG₄/CS₀

The pin function is switched as shown below according to the operating mode and bit PG4DDR.

Operating Mode	Modes	4 to 6	Mode 7		
PG4DDR	0	1	0	1	
Pin function	PG₄ input pin	\overline{CS}_0 output pin	PG_4 input pin	PG ₄ output pin	

 PG_3/\overline{CS}_1 The pin function is switched as shown below according to the operating mode and bits PG3DDR and CS167E.

Operating Mode		Mode		Мо	de 7	
CS167E	(C		1	0	1
PG3DDR	0	1	0	1		—
Pin function	PG₃ input pin	PG₃ output pin	PG₃ input pin	PG₃ output pin		

 PG_2/\overline{CS}_2 The pin function is switched as shown below according to the operating mode and bits PG2DDR and CS25E.

Operating Mode		Mode	Mo	de 7		
CS25E	(C		1	0	1
PG2DDR	0	1	0	1	—	—
Pin function	PG₂ input pin	PG₂ output pin	PG₂ input pin	PG ₂ output pin		

Selection Method and Pin Functions

 PG_1/\overline{CS}_3

Pin

The pin function is switched as shown below according to the operating mode and bits PG1DDR and CS25E.

Operating Mode		Modes	Мо	de 7		
CS25E	(C		1		1
PG1DDR	0	1	0	1	—	—
Pin function	$PG_1 input PG_1 PG_1 input \overline{CS}_3$ pin output pin pin output pin					PG₁ output pin

 PG_0/\overline{CAS}

The pin function is switched as shown below according to the combination of the operating mode and bits RMTS2 to RMTS0 and PG0DDR.

Operating Mode		Modes 4 to 6	Мо	de 7	
RMTS2 to RMTS0		00, o B'111	B'001 to B'011	_	
PG0DDR	0	1	—	0	1
Pin function	PG₀ input pin	PG₀ output pin	CAS output pin	PG₀ input pin	PG₀ output pin

5.18 Pin States

5.18.1 Port States in Each Mode

Table 5.34 I/O Port States in Each Processing State

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
Port 1	4 to 7	Т	Т	kept	kept	I/O port
Port 2	4 to 7	Т	Т	kept	kept	I/O port
Port 3	4 to 7	Т	Т	kept	kept	I/O port
P4 ₇ /DA ₁	4 to 7	Т	Т	[DAOE1 = 1] kept	kept	I/O port
				[DAOE1 = 0] T		
P4 ₆ /DA ₀	4 to 7	Т	Т	[DAOE0 = 1] kept	kept	I/O port
				[DAOE0 = 0] T		
P4 ₅ to P4 ₀	4 to 7	Т	Т	Т	Т	Input port
P5 ₇ to DA ₃	4 to 7	Т	Т	[DAOE3 = 1] kept	kept	I/O port
				[DAOE3 = 0] T		
P5 ₆ to DA ₂	4 to 7	Т	Т	[DAOE2 = 1] kept	kept	I/O port
				[DAOE2 = 0] T		
P5 ₅ , P5 ₄	4 to 7	Т	Т	Т	Т	Input port
P5₃/WAIT/ BREQO	4 to 6	Т	Т	[BREQOE · BREQOPS + WAITE · WAITPS = 0] kept	[BREQOE · BREQOPS + WAITE · WAITPS = 0] kept	[BREQOE · BREQOPS + WAITE · WAITPS = 0] I/O port
				[BREQOE BREQOPS = 1] kept	[BREQOE · BREQOPS = 1] BREQO	[BREQOE BREQOPS = 1] BREQO
				$[BREQOE \cdot BREQOPS = 0]$ and $[WAITE \cdot WAITPS \cdot \overline{DDR} = 1]$ T	$[BREQOE \\ BREQOPS = 0] \\ and \\ [WAITE WAITPS \\ \overline{DDR} = 1] \\ T$	[BREQOE · BREQOPS = 0] and [WAITE · WAITPS · DDR = 1] WAIT
	7	Т	Т	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
P5 ₂ to P5 ₀	4 to 7	Т	Т	kept	kept	I/O port
P6 ₇ /CS ₇	4 to 6	Т	Т	[CS167E = 0], $[CS167E \cdot DDR = 1]$ kept $[CS167E \cdot DDR \cdot OPE = 1]$ T $[CS167E \cdot DDR \cdot OPE = 1]$ H	[CS167E · DDR = 1] kept	$[CS167E = 0]$ $I/O \text{ port}$ $[CS167E \cdot \overline{DDR} = 1]$ $Input \text{ port}$ $[CS167E \cdot DDR = 1]$ $\overline{CS}_7 \text{ to } \overline{CS}_6$
$P6_6/\overline{CS}_6$	7	Т	Т	kept	kept	I/O port
P6 ₅ to P6 ₂	4 to 7	Т	Т	kept	kept	I/O port
P6 ₁ /CS ₅	4 to 6	to 6 T	тт	[CS25E · DDR · OPE = 1] T [CS25E · DDR · OPE = 1]	[CS25E = 0] kept [CS25E · DDR = 1] kept [CS25E · DDR = 1]	$[CS25E = 0]$ $I/O \text{ port}$ $[CS25E \cdot \overline{DDR} = 1]$ $Input \text{ port}$ $[CS25E \cdot DDR = 1]$
				H [CS25E = 0], [CS25E · DDR = 1] kept	T	\overline{CS}_5 to \overline{CS}_4
$P6_0/\overline{CS}_4$	7	Т	Т	kept	kept	I/O port
Port 7	4 to 7	т	Т	kept	kept	I/O port
P8 ₆ /WAIT	4 to 6	т	Т	$\frac{[WAITE \cdot WAITPS \cdot DDR = 1]}{T}$	$\frac{[WAITE \cdot WAITPS \cdot}{DDR} = 1]$ T	$\frac{[WAITE \cdot WAITPS \cdot]}{DDR = 1]}$ WAIT
				[WAITE · WAITPS = 0] kept	[WAITE · WAITPS = 0] kept	[WAITE · WAITPS = 0] I/O port
	7	Т	Т	kept	kept	I/O port
$P8_5$ to $P8_0$	4 to 7	Т	Т	kept	kept	I/O port
Port 9	4 to 7	Т	Т	kept	kept	I/O port

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PA ₇ /A ₂₃ PA ₆ /A ₂₂	4, 5, 6	Т	Т	[AnE = 0] kept	[AnE = 0] kept	[AnE = 0] I/O port
PA ₅ /A ₂₁				[AnE · DDR = 1] T	[AnE · DDR = 1] T	$[AnE \cdot \overline{DDR} = 1]$ Input port
				[AnE · DDR · OPE = 1] T	[AnE · DDR = 1] T	[AnE · DDR = 1] Address output
				[AnE · DDR · OPE = 1] kept		
	7	Т	Т	kept	kept	I/O port
PA ₄ /A ₂₀	4, 5	L	Т	[Ā20Ē · DDR = 1] kept	[Ā20Ē · DDR = 1] kept	$\overline{[A20E} \cdot DDR = 1]$ Output port
				[A20E · OPE = 1] T	= 1]	[A20E+ A20E · DDR = 1]
				[A20E · OPE = 1] kept	Т	Address output
	6	Т	Т	$[A20E = 0],$ $[A20E \cdot \overline{DDR} = 1]$	$[A20E = 0],$ $[A20E \cdot \overline{DDR} = 1]$	[A20E = 0] I/O port
				kept [A20E · DDR ·	kept [A20E · DDR = 1]	$[A20E \cdot \overline{DDR} = 1]$ Input port
				<u>OPE</u> = 1] T	Т	[A20E · DDR = 1] Address output
				[A20E · DDR · OPE = 1] kept		·
	7	Т	Т	kept	kept	I/O port
PA ₃ /A ₁₉ PA ₂ /A ₁₈	4, 5	L	Т	[OPE = 0] T	Т	Address output
PA ₁ /A ₁₇ PA ₀ /A ₁₆				[OPE = 1] kept		
	6	Т	Т	$[DDR \cdot OPE = 0]$ T	Т	[DDR = 0] Input port
				[DDR · OPE = 1] kept		[DDR = 1] Address output
	7	Т	Т	kept	kept	I/O port

Port Name Pin Name	MCL Ope Mod	rating	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
Port B	4, 5		L	Т	[OPE = 0] T	Т	Address output
					[OPE = 1] kept		
	6		Т	Т	$[DDR \cdot OPE = 0]$ T	Т	[DDR = 0] Input port
					[DDR · OPE = 1] kept		[DDR = 1] Address output
	7		Т	Т	kept	kept	I/O port
Port C	4, 5		L	Т	[OPE = 0] T	Т	Address output
					[OPE = 1] kept		
	6		Т	Т	$[DDR \cdot OPE = 0]$ T	Т	[DDR = 0] Input port
					[DDR · OPE = 1] kept		[DDR = 1] Address output
	7		Т	Т	kept	kept	I/O port
Port D	4 to	6	Т	Т	т	Т	Data bus
	7		Т	Т	kept	kept	I/O port
Port E	4 to 6	8-bit bus	Т	Т	kept	kept	I/O port
		16-bit bus	Т	Т	Т	Т	Data bus
	7			Т	kept	kept	I/O port
PF ₇ /ø	4 to	6	Clock output	Т	[DDR = 0] Input port	[DDR = 0] Input port	[DDR = 0] Input port
					[DDR = 1] H	[DDR = 1] Clock output	[DDR = 1] Clock output
	7		Т	Т	[DDR = 0] Input port	[DDR = 0] Input port	[DDR = 0] Input port
					[DDR = 1] H	[DDR = 1] Clock output	[DDR = 1] Clock output

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
PF_{6}/\overline{AS}	4 to 6	Н	Т	[ASOD = 1] kept	[ASOD = 1] kept	[ASOD = 1] I/O port
				$[\overline{\text{ASOD}} \cdot \overline{\text{OPE}} = 1]$ T	[ASOD = 0] T	$\frac{[ASOD=0]}{AS}$
				$[\overline{\text{ASOD}} \cdot \text{OPE} = 1]$ H		
	7	Т	Т	kept	kept	I/O port
PF₅/RD PF₄/HWR	4 to 6	Н	Т	[OPE = 0] T	Т	RD, HWR
4				[OPE = 1] H		
	7	Т	Т	kept	kept	I/O port
PF ₃ /LWR	4 to 6	Н	Т	[LWROD = 1] kept	[LWROD = 1] kept	[LWROD = 1] I/O port
				$[\overline{\text{LWROD}} \cdot \overline{\text{OPE}} = 1]$ T	[LWROD = 0] T	$\frac{[LWROD = 0]}{LWR}$
				[LWROD · OPE = 1] H		
	7	Т	Т	kept	kept	I/O port
PF ₂ /ICAS/ BREQO	4 to 6	Т	Т	[BREQOE BREQOPS + LCASE = 0] kept	[BREQOE BREQOPS + LCASE = 0] kept	[BREQOE BREQOPS + LCASE = 0] I/O port
				[BREQOE BREQOPS = 1] kept	[BREQOE BREQOPS = 1] BREQO	[BREQOE BREQOPS = 1] BREQO
				[LCASE = 1, OPE = 0] T	[LCASE = 1] T	[LCASE = 1] LCAS
				[LCASE = 1, OPE = 1] H		
	7	Т	Т	kept	kept	I/O port
PF ₁ /BACK	4 to 6	Т	Т	[BRLE=0] kept	L	[BRLE = 0] I/O port
				[BRLE=1] BACK		[BRLE = 1] BACK
	7	Т	Т	kept	kept	I/O port

T T Input port	Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus-Released State	Program Execution State Sleep Mode
$\frac{1}{PG_{4}/GS_{0}} = \frac{1}{7} + \frac{1}{T} + \frac{1}{Rept} + \frac{1}{Rept} + \frac{1}{VO port} + \frac{1}{VO port} + \frac{1}{PG_{4}/GS_{0}} + \frac{1}{4}, 5 + \frac{1}{7} + \frac{1}{T} +$	PF ₀ /BREQ	4 to 6	Т	Т		Т	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\frac{1}{6} \qquad T \qquad $		7	Т	Т	kept	kept	I/O port
$\frac{1}{PG_{3} (CS_{1})} = \frac{1}{T} + \frac{1}{CS_{5}} + \frac{1}{CS_{5}} + \frac{1}{T} + \frac{1}{CS_{5}} + \frac{1}{CS_{5}} + \frac{1}{T} + $	PG ₄ /CS ₀	4, 5	Н	Т		Т	• •
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6	Т				· ·
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		7	Т	Т	kept	kept	I/O port
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PG ₃ / CS 1	4 to 6	Т	Т			
$\overline{PG_2/CS_2} = 4 \text{ to } 6 \text{ T} \\ \overline{PG_2/CS_3} = 11 \\ \overline{T} \\ \overline{7} \\ \overline{T} \\ \overline$						• •	$[CS167E \cdot \overline{DDR} = 1]$ Input port
$\overrightarrow{PG_2/CS_2} = 4 \text{ to } 6 \\ T \\ T \\ \overrightarrow{PG_2/CS_2} = 4 \text{ to } 6 \\ T \\ \overrightarrow{PG_1/CS_3} = 4 \\ T \\ \overrightarrow{PG_1/CS_3} = 1 \\ \overrightarrow{PG_1/CS_3} $					OPE = 1]		$\frac{[CS167E \cdot DDR = 1]}{CS_1}$
$\frac{PG_2/\overline{CS_2}}{PG_1/\overline{CS_3}} = \begin{array}{ccccccccccccccccccccccccccccccccccc$					OPE = 1]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	Т	Т	kept	kept	I/O port
$\frac{[CS25E \cdot \overline{DDR} = 1]}{T} \begin{bmatrix} CS25E = 1 \end{bmatrix} \qquad \begin{bmatrix} CS25E \cdot \overline{DDR} = 1 \end{bmatrix}}{[DRAME + OPE = 1]} \qquad \begin{bmatrix} CS25E \cdot \overline{DDR} = 1 \end{bmatrix}$ $\frac{[CS25E \cdot DDR \cdot GPE = 1]}{CS_2 \text{ to } \overline{CS_3}} \qquad \begin{bmatrix} CS25E \cdot DDR = 1 \end{bmatrix}}{CS_2 \text{ to } \overline{CS_3}}$		4 to 6	Т	Т			
$\overline{OPE} = 1]$ T $[CS25E \cdot DDR \cdot OPE = 1]$ H $\overline{7 T T} kept kept I/O \text{ port}$ $\overline{PG0/CAS} 4 \text{ to } 6 T T [DRAME = 0] T [DRAME = 0] Input \text{ port}$ $[DRAME \cdot \overline{OPE} = 1] [DRAME + OPE = 0] [$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					<u>OPE</u> = 1]		
$\overrightarrow{PG0/CAS} 4 \text{ to } 6 \qquad T \qquad T \qquad [DRAME = 0] \qquad T \qquad [DRAME = 0] \\ kept \qquad \qquad Input port \\ [DRAME \cdot \overrightarrow{OPE} = 1] \qquad [DRAME = 1] \\ T \qquad \qquad CAS \qquad \qquad$					OPE = 1]		
keptInput port $[DRAME \cdot \overline{OPE} = 1]$ $[DRAME = 1]$ T \overline{CAS} $[DRAME \cdot OPE = 1]$ \overline{CAS}		7	Т	Т	kept	kept	I/O port
T CAS [DRAME · OPE = 1] CAS	PG0/CAS	4 to 6	Т	Т		Т	
CAS							
7 T T kept kept I/O port					<u> </u>		
		7	Т	Т	kept	kept	I/O port

Legend			
H:	High level		
L:	Low level		
T:	High impedance		
kept:	Input port becomes high-impedance, output port retains state		
DDR:	Data direction register		
OPE:	Output port enable		
WAITE:	Wait input enable		
BRLE:	Bus release enable		
BREQOE:	BREQO pin enable		
DRAME:	DRAM space setting		
LCASE:	DRAM space setting, 16-bit bus mode setting		
AnE:	Address n enable (n = 23 to 21)		
A20E:	Address 20 enable		
BREQOPS: BREQO pin select			
ASOD:	AS output disable		
WAITPS:	WAIT pin select		
CS167E:	CS167 enable		
CS25E:	CS25 enable		
LWROD:	LWR output disable		

5.19 I/O Port Block Diagrams

5.19.1 Port 1

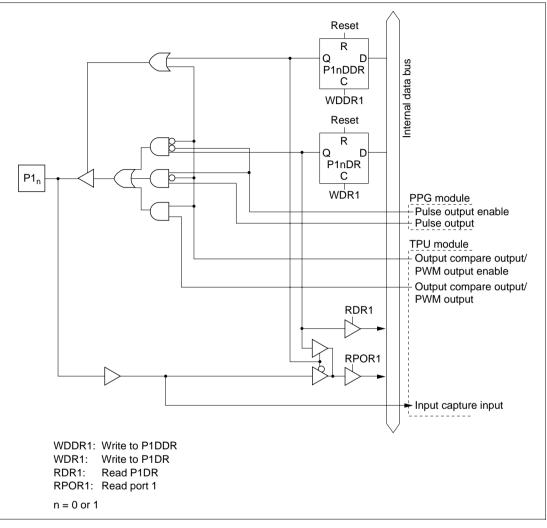


Figure 5.27 (a) Port 1 Block Diagram (Pins P1₀ and P1₁)

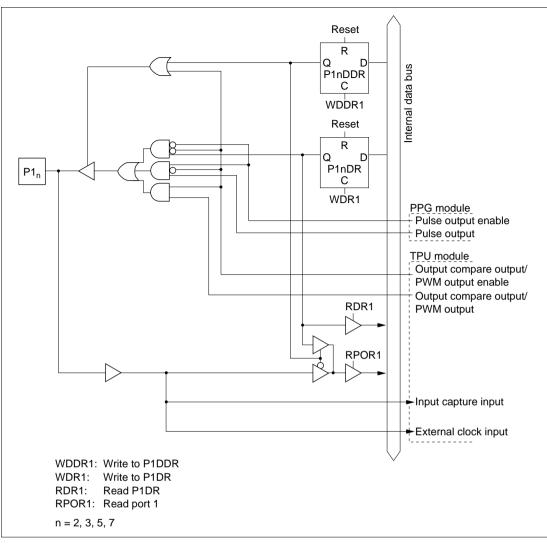


Figure 5.27 (b) Port 1 Block Diagram (Pins P1₂, P1₃, P1₅, and P1₇)

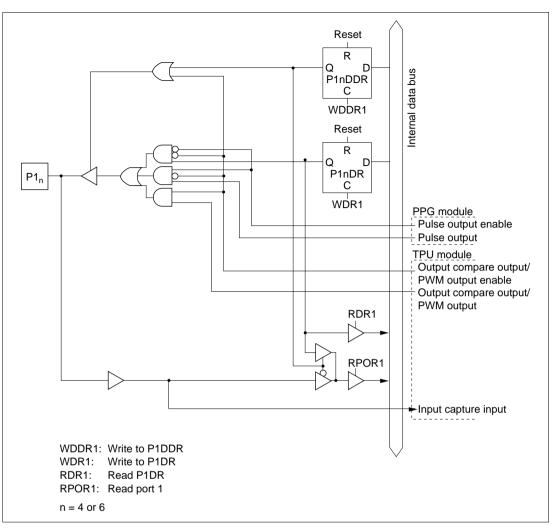


Figure 5.27 (c) Port 1 Block Diagram (Pins P1₄ and P1₆)

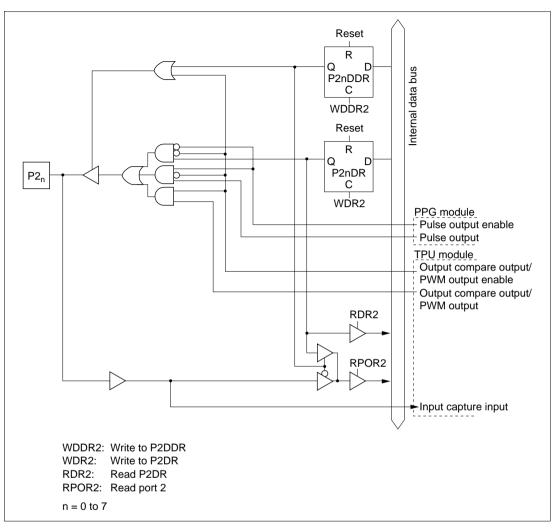


Figure 5.28 Port 2 Block Diagram (Pins P2_n)

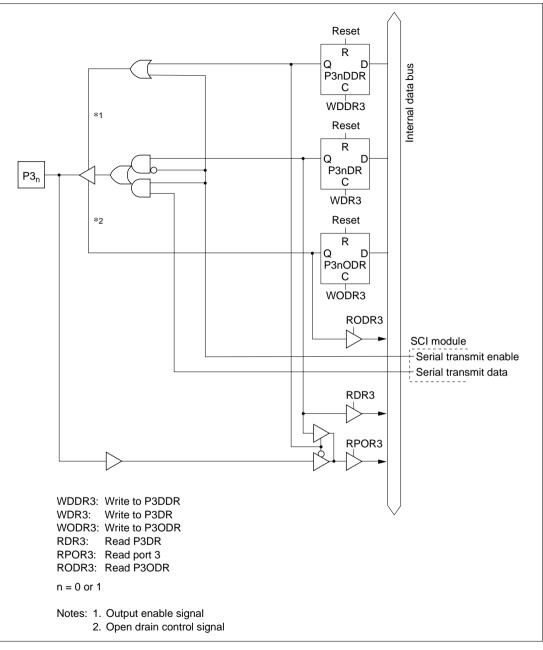


Figure 5.29 (a) Port 3 Block Diagram (Pins P3₀ and P3₁)

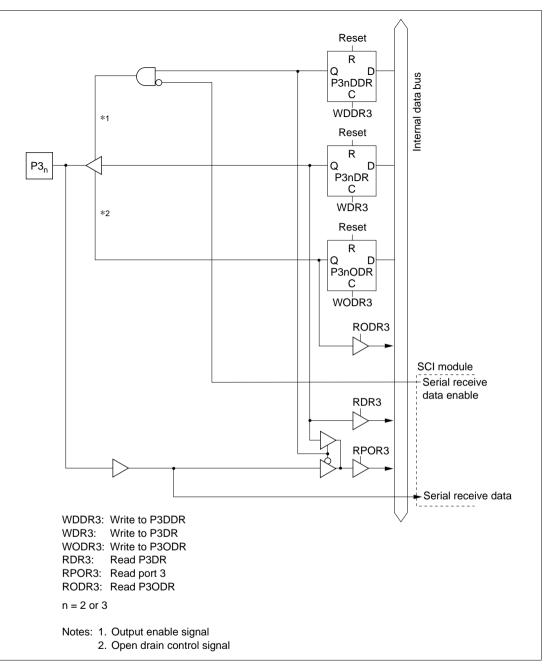


Figure 5.29 (b) Port 3 Block Diagram (Pins P3₂ and P3₃)

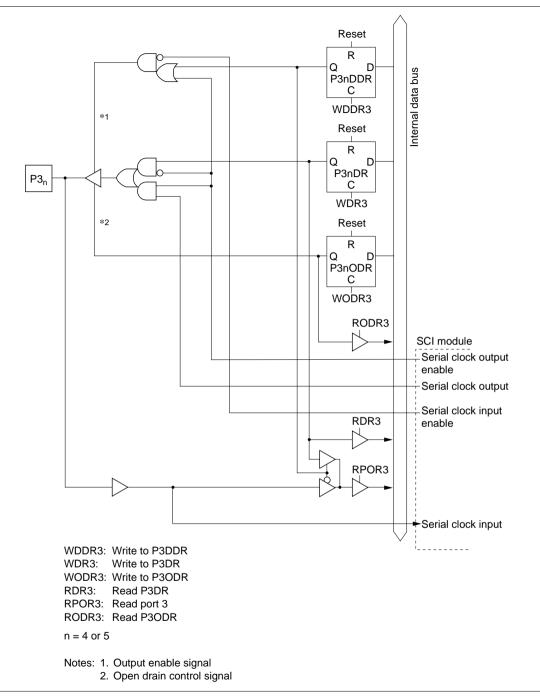


Figure 5.29 (c) Port 3 Block Diagram (Pins P3₄ and P3₅)

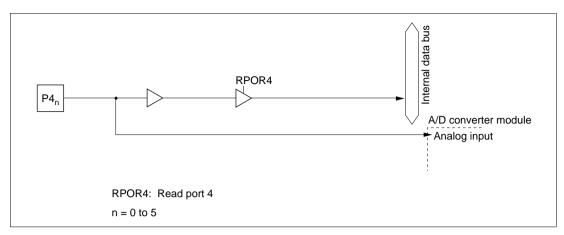


Figure 5.30 (a) Port 4 Block Diagram (Pins P4₀ to P4₅)

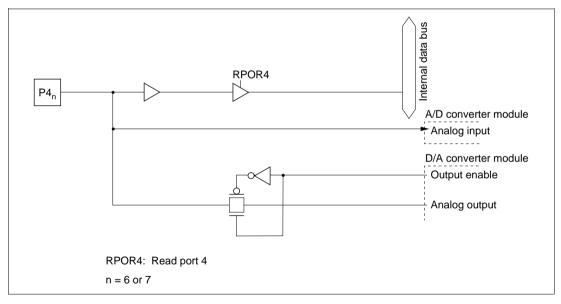


Figure 5.30 (b) Port 4 Block Diagram (Pins P4₆ and P4₇)

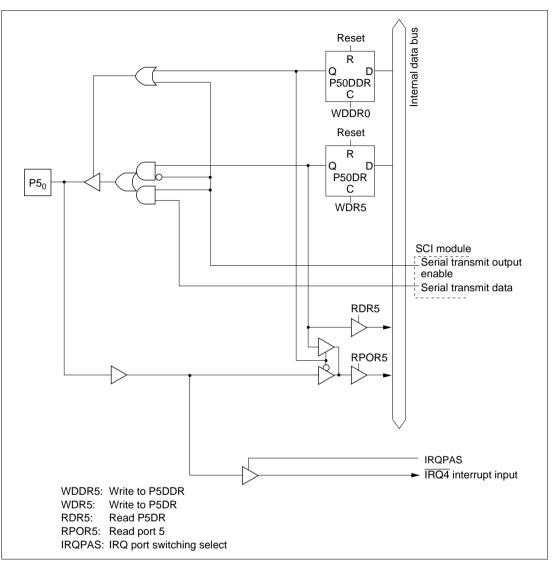


Figure 5.31 (a) Port 5 Block Diagram (Pin P5₀)

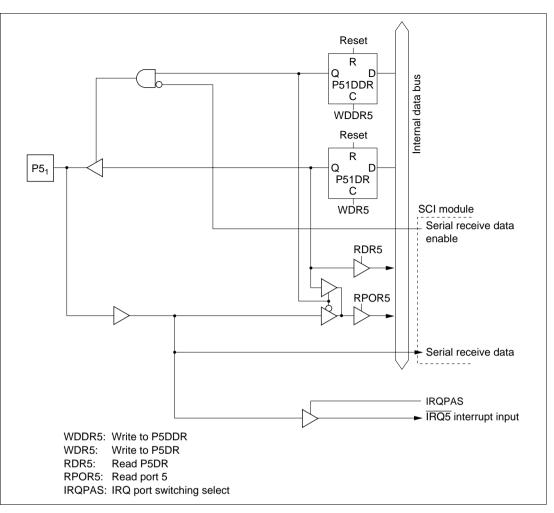


Figure 5.31 (b) Port 5 Block Diagram (Pin P5₁)

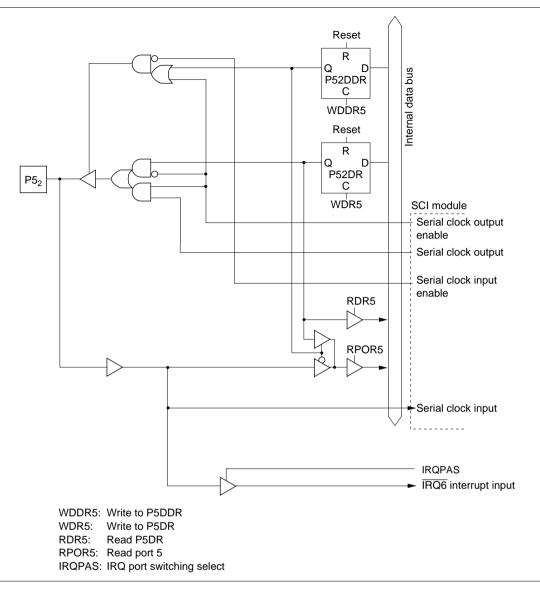


Figure 5.31 (c) Port 5 Block Diagram (Pin P5₂)

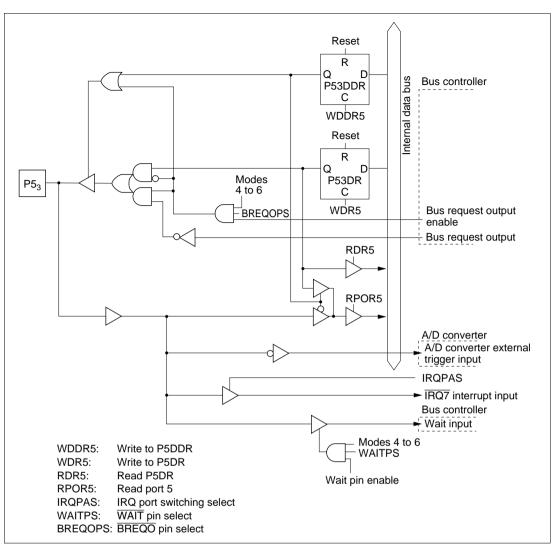


Figure 5.31 (d) Port 5 Block Diagram (Pin P5₃)

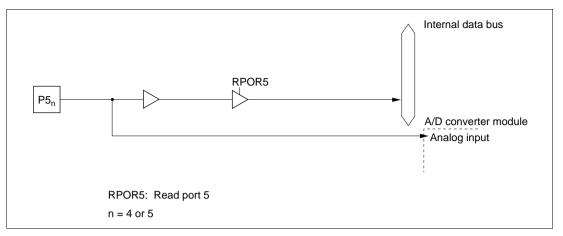


Figure 5.31 (e) Port 5 Block Diagram (Pins P5₄ and P₅)

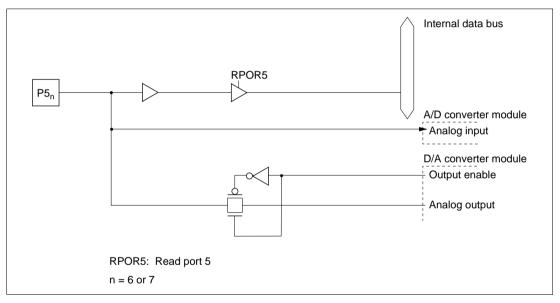


Figure 5.31 (f) Port 5 Block Diagram (Pins $P5_6$ and P_7)

5.19.6 Port 6

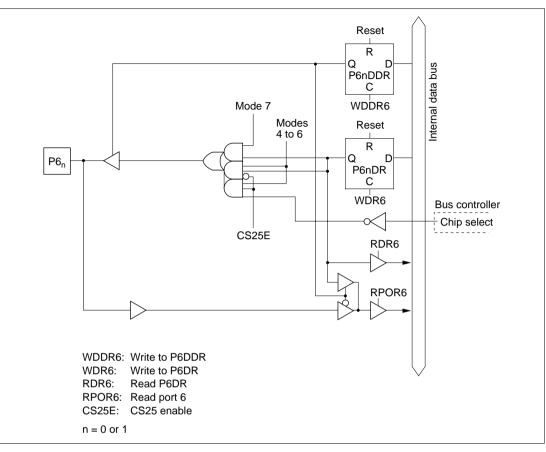


Figure 5.32 (a) Port 6 Block Diagram (Pins P6₀ and P6₁)

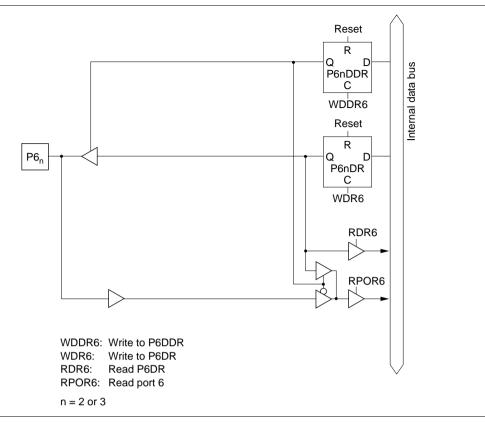


Figure 5.32 (b) Port 6 Block Diagram (Pins P6₂ and P6₃)

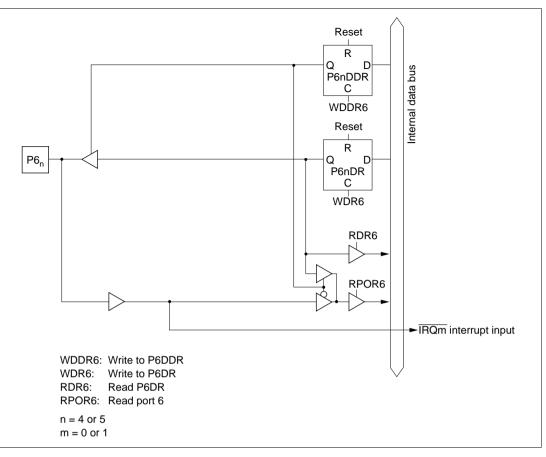


Figure 5.32 (c) Port 6 Block Diagram (Pins P6₄ and P6₅)

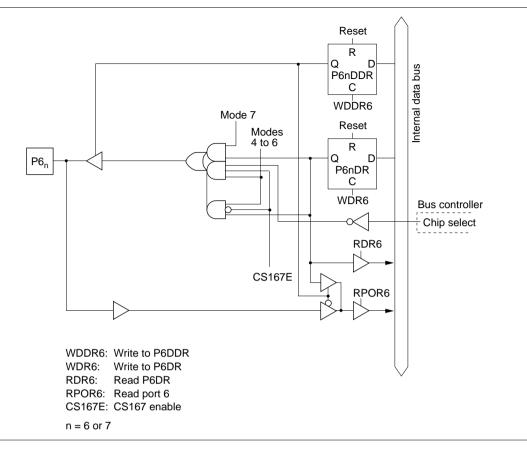


Figure 5.32 (d) Port 6 Block Diagram (Pins P6₆ and P6₇)

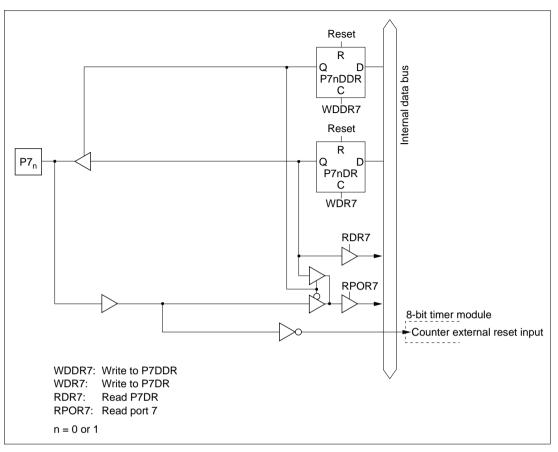


Figure 5.33 (a) Port 7 Block Diagram (Pins P7₀ and P7₁)

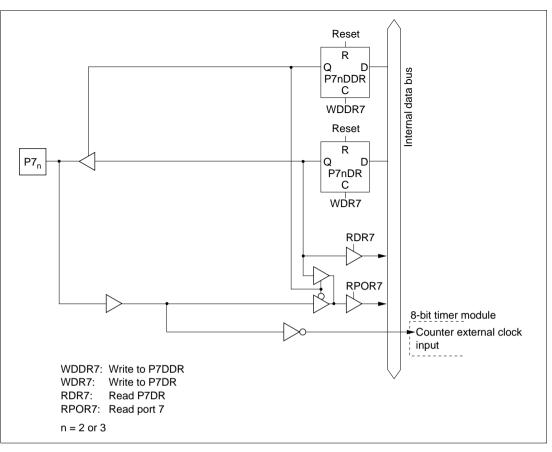


Figure 5.33 (b) Port 7 Block Diagram (Pins P7₂ and P7₃)

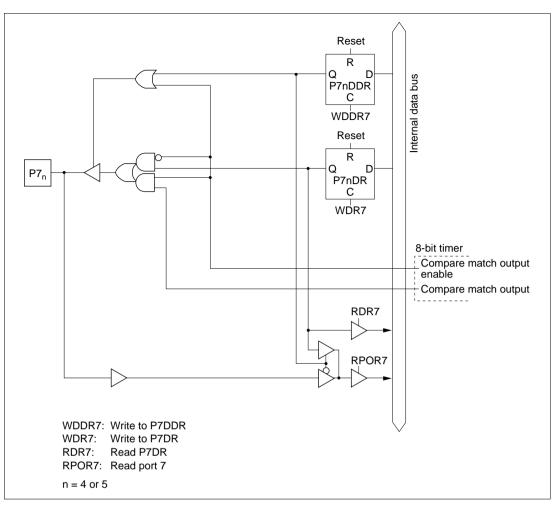


Figure 5.33 (c) Port 7 Block Diagram (Pins P7₄ and P7₅)

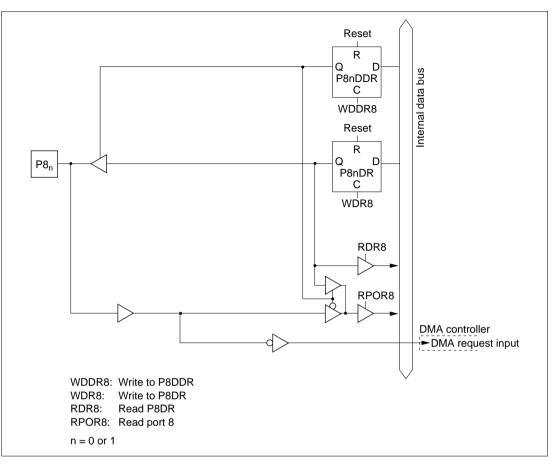


Figure 5.34 (a) Port 8 Block Diagram (Pins P8₀ and P8₁)

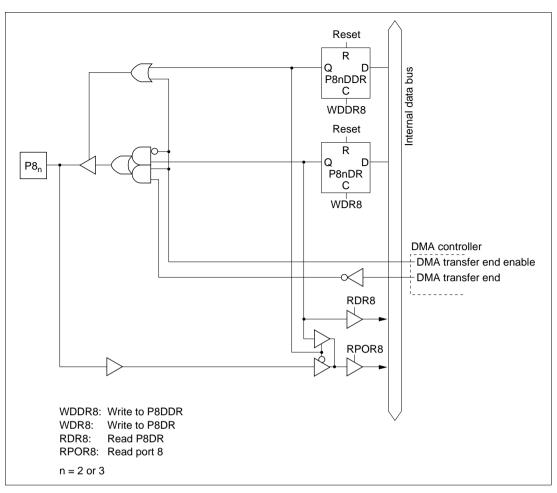


Figure 5.34 (b) Port 8 Block Diagram (Pins P8₂ and P8₃)

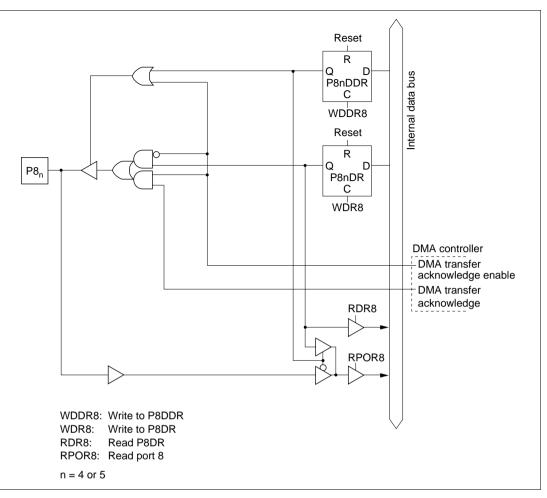


Figure 5.34 (c) Port 8 Block Diagram (Pins P8₄ and P8₅)

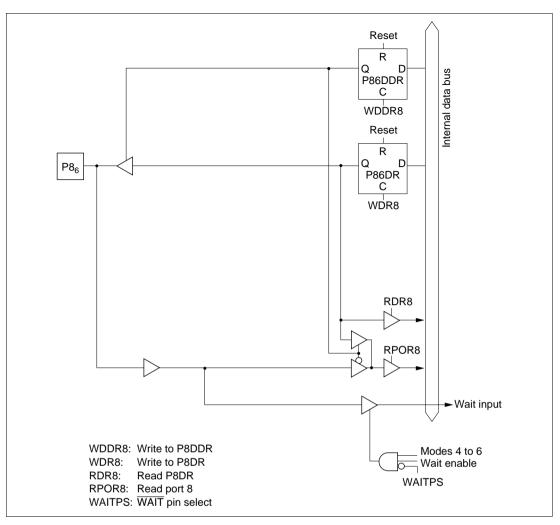


Figure 5.34 (d) Port 8 Block Diagram (Pin P8₆)

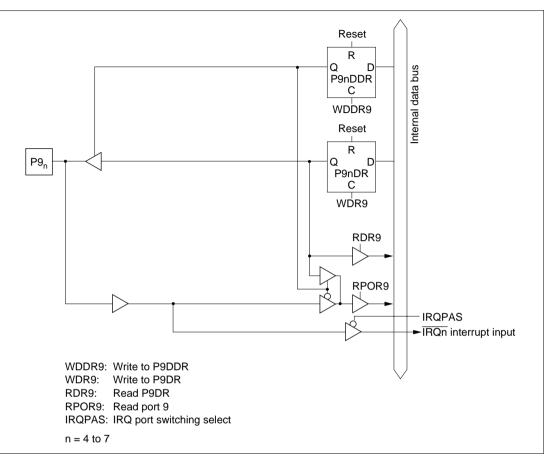


Figure 5.35 (a) Port 9 Block Diagram (Pins P9₄ to P9₇)

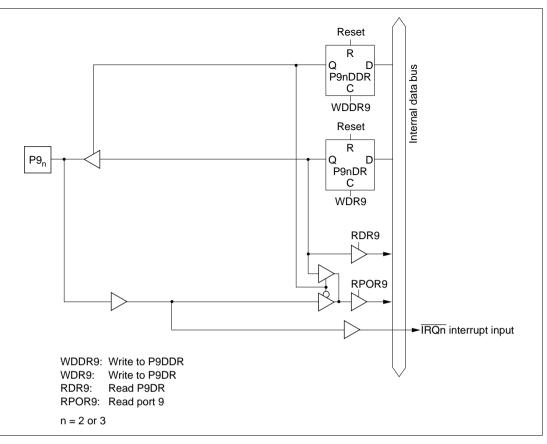


Figure 5.35 (b) Port 9 Block Diagram (Pins P9₂ and P9₃)

5.19.10 Port A

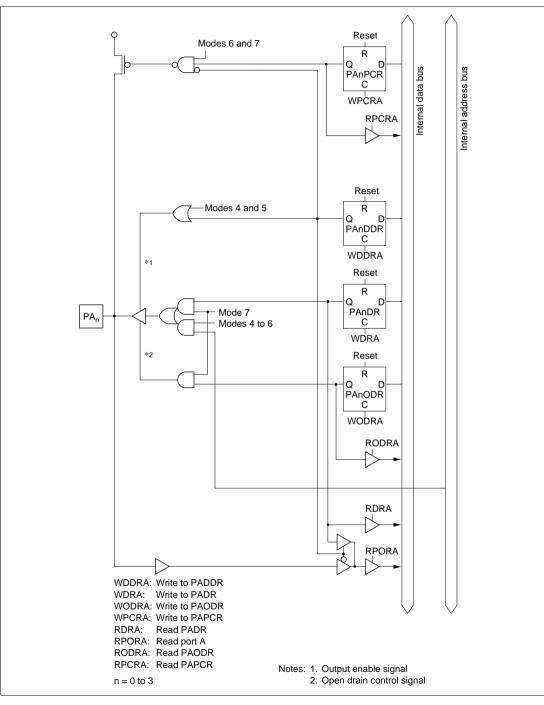


Figure 5.36 (a) Port A Block Diagram (Pins PA₀, PA₁, PA₂, and PA₃)

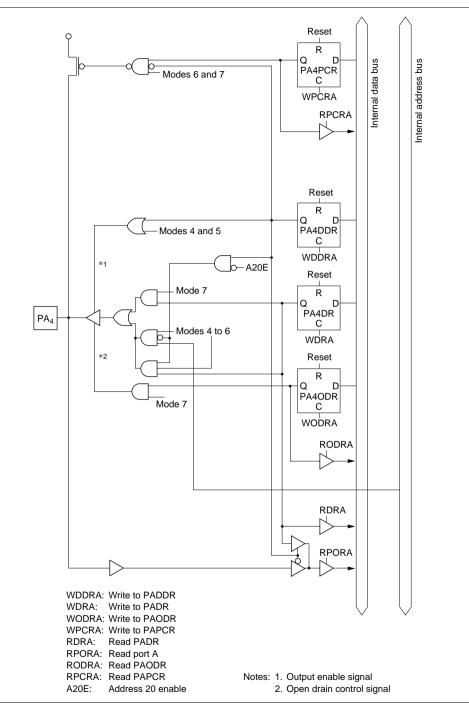


Figure 5.36 (b) Port A Block Diagram (Pin PA₄)

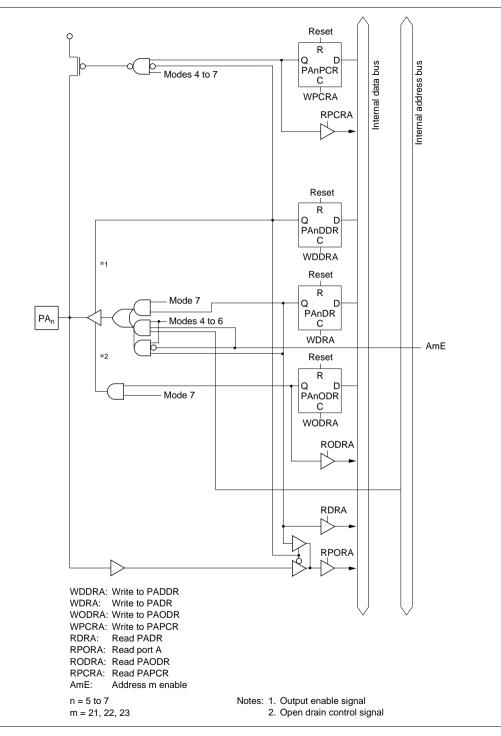


Figure 5.36 (c) Port A Block Diagram (Pins PA₅, PA₆, and PA₇)

5.19.11 Port B

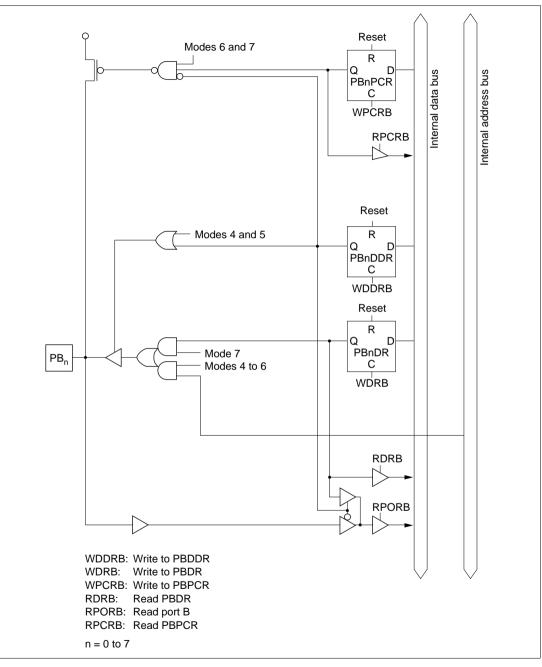


Figure 5.37 Port B Block Diagram (Pins PB_n)

5.19.12 Port C

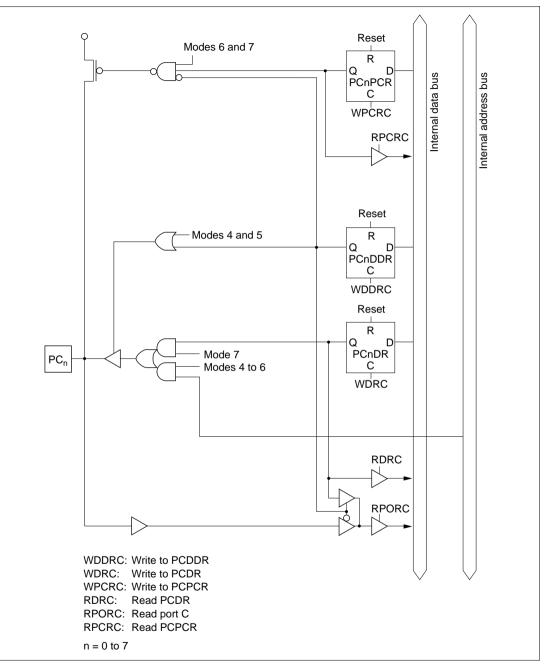


Figure 5.38 Port C Block Diagram (Pins PC_n)

5.19.13 Port D

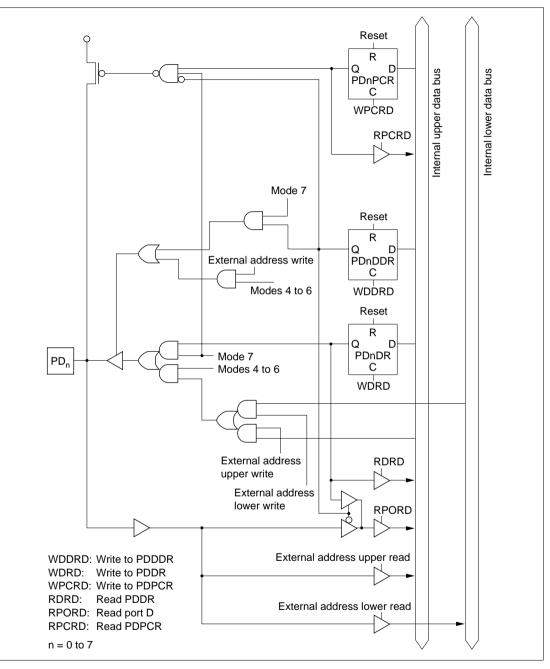


Figure 5.39 Port D Block Diagram (Pins PD_n)

5.19.14 Port E

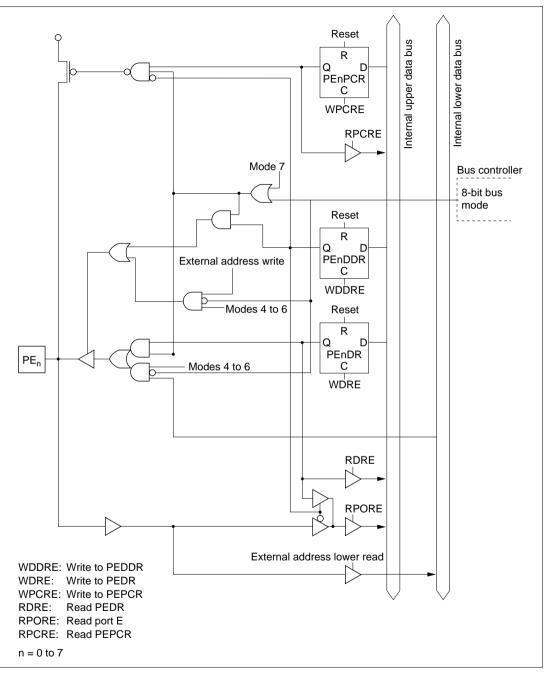


Figure 5.40 Port E Block Diagram (Pins PE_n)

5.19.15 Port F

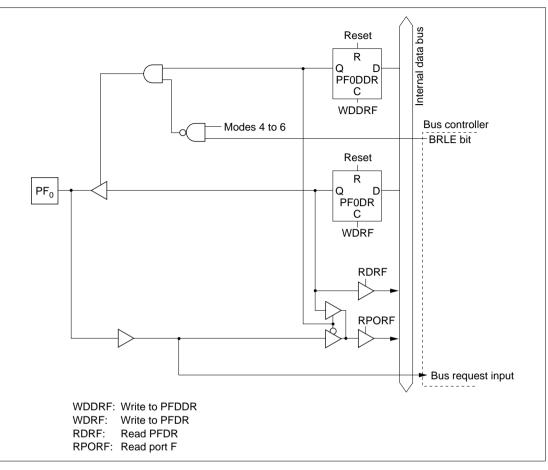


Figure 5.41 (a) Port F Block Diagram (Pin PF₀)

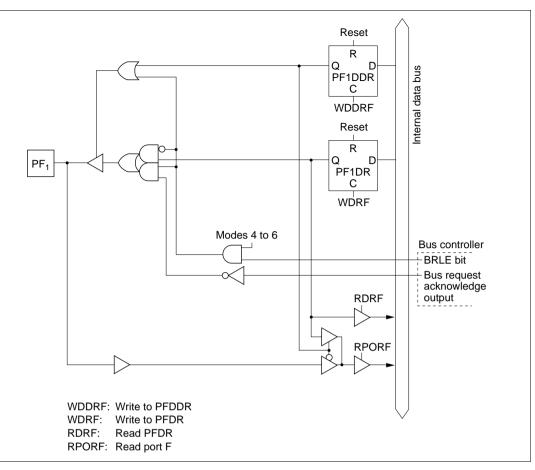


Figure 5.41 (b) Port F Block Diagram (Pin PF₁)

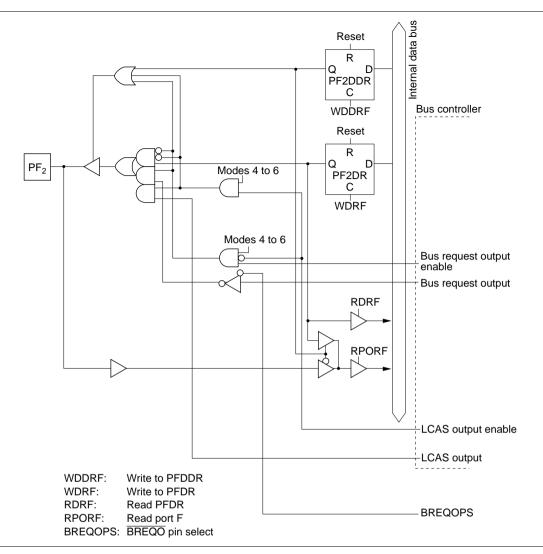


Figure 5.41 (c) Port F Block Diagram (Pin PF₂)

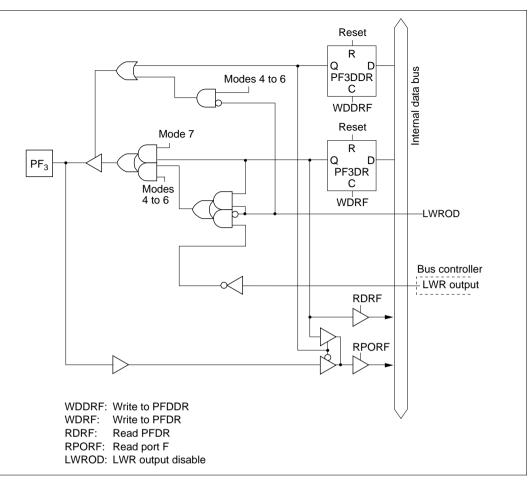


Figure 5.41 (d) Port F Block Diagram (Pin PF₃)

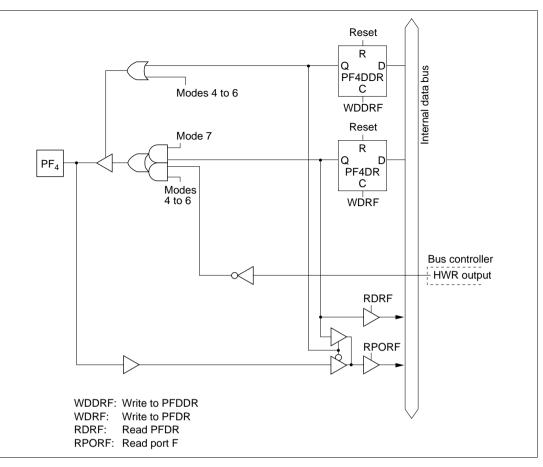


Figure 5.41 (e) Port F Block Diagram (Pin PF₄)

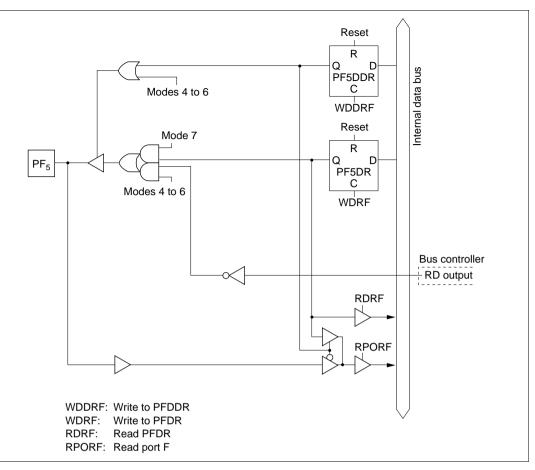


Figure 5.41 (f) Port F Block Diagram (Pin PF₅)

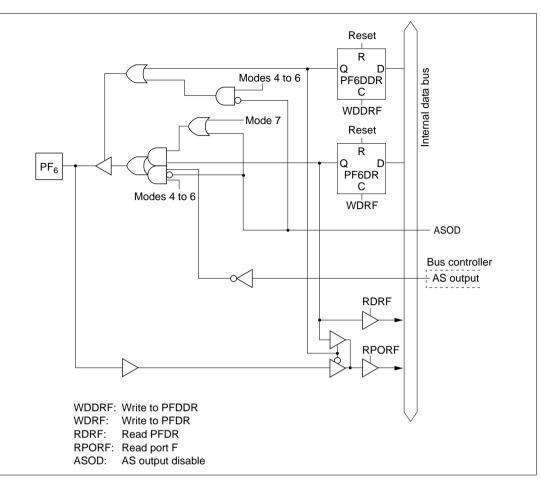


Figure 5.41 (g) Port F Block Diagram (Pin PF₆)

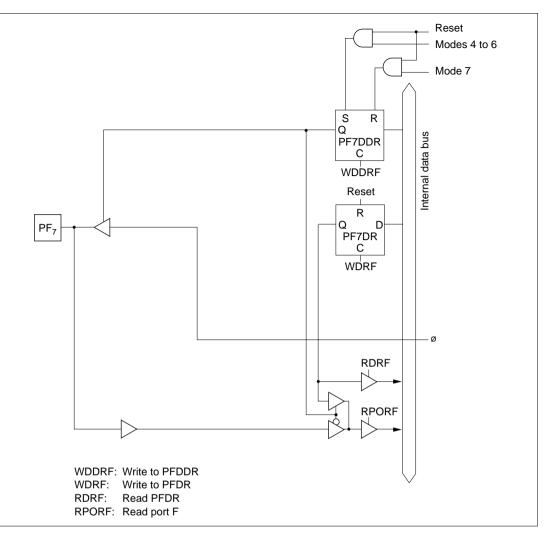


Figure 5.41 (h) Port F Block Diagram (Pin PF₇)

5.19.16 Port G

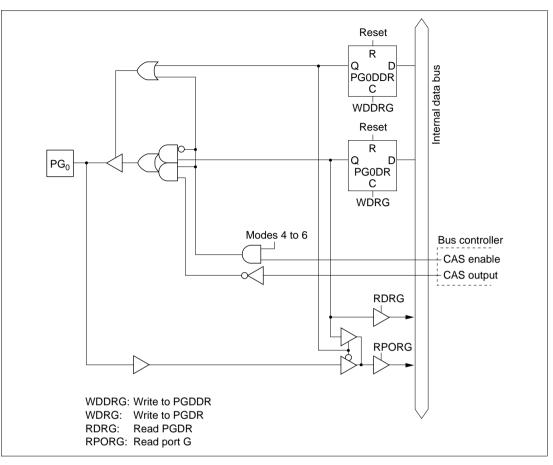


Figure 5.42 (a) Port G Block Diagram (Pin PG₀)

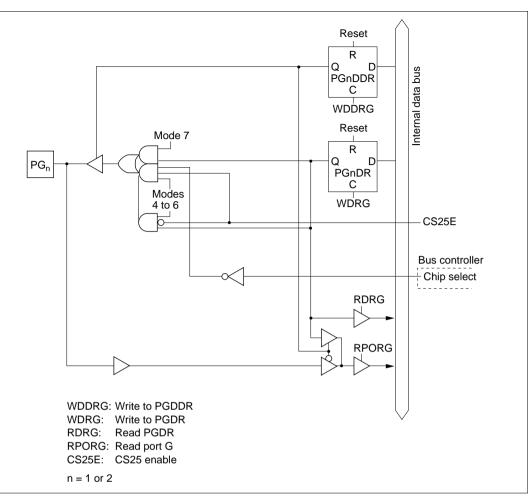


Figure 5.42 (b) Port G Block Diagram (Pins PG₁ and PG₂)

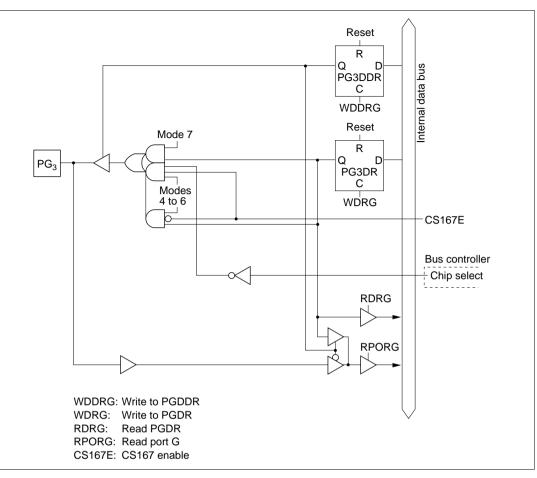


Figure 5.42 (c) Port G Block Diagram (Pin PG₃)

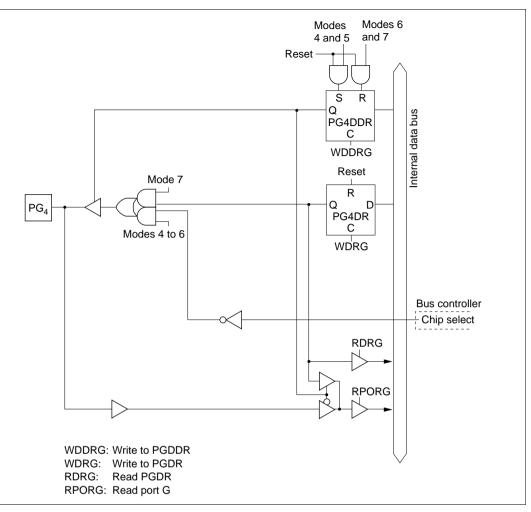


Figure 5.42 (d) Port G Block Diagram (Pin PG₄)

Section 6 Supporting Module Block Diagrams

6.1 Interrupt Controller

6.1.1 Features

- Selection of two interrupt control modes
- Eight priority levels can be set for each module with IPR
- Independent vector addresses (NMI, \overline{IRQ}_7 to \overline{IRQ}_0)
- Nine external interrupt pins
- DTC and DMAC activation control

6.1.2 Block Diagram

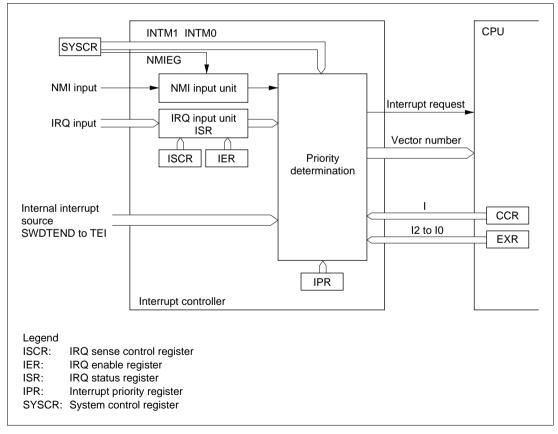


Figure 6.1 Block Diagram of Interrupt Controller

6.1.3 Pins

Table 6.1 Interrupt Controller Pins

Name	Symbol	I/O	Function
Nonmaskable interrupt	NMI	Input	Nonmaskable external interrupt; rising or falling edge can be selected
External interrupt requests 7 to 0	\overline{IRQ}_7 to \overline{IRQ}_0	Input	Maskable external interrupts; rising, falling, or both edges, or level sensing, can be selected

6.2 DMA Controller

6.2.1 Features

- Selection of short address mode or full address mode
- 16-Mbyte address space can be specified directly
- Byte or word can be set as the transfer unit
- Activation sources: internal interrupt, external request, auto-request (depending on transfer mode)
- Module stop mode can be set

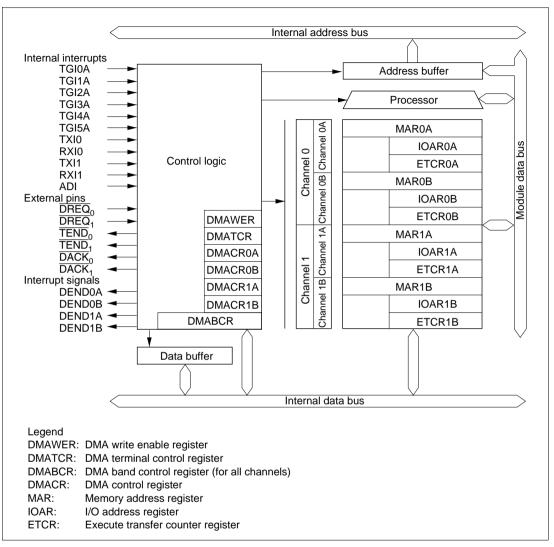


Figure 6.2 Block Diagram of DMAC

6.2.3 Pins

Table 6.2 DMAC Pins

Channel	Name	Symbol	I/O	Function
0	DMA request 0		Input	DMAC channel 0 external request
	DMA transfer acknowledge 0		Output	DMAC channel 0 single address transfer acknowledge
	DMA transfer end 0	TEND ₀	Output	DMAC channel 0 transfer end
1	DMA request 1		Output	DMAC channel 1 external request
	DMA transfer acknowledge 1	DACK	Output	DMAC channel 1 single address transfer acknowledge
	DMA transfer end 1		Output	DMAC channel 1 transfer end

6.3 Data Transfer Controller

6.3.1 Features

- Transfer possible over any number of channels
- Variety of transfer modes, including normal, repeat, and block transfer
- Direct specification of 16-Mbyte address space possible
- Byte or word can be selected as the transfer unit
- A CPU interrupt can be requested for an interrupt that activates the DTC
- Can be activated by software
- Module stop mode can be set
- DTC register information is located in on-chip RAM

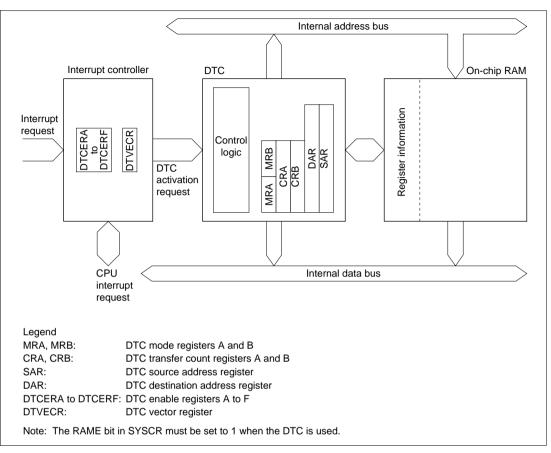


Figure 6.3 Block Diagram of DTC

6.4 16-Bit Timer Pulse Unit

6.4.1 Features

- Comprises six 16-bit timer channels
- Maximum 16 pulse inputs/outputs
- Selection of 8 counter input clocks for each channel
- Compare match, input capture, counter clear operation, synchronous operation, and PWM mode can be set for each channel
- Buffer operation can be set for channels 0 and 3
- Phase counting mode can be set independently for each of channels 1, 2, 4, and 5
- Cascaded operation possible by connecting two 16-bit counter channels to form a 32-bit counter
- Fast access via internal 16-bit bus
- Programmable pulse generator (PPG) output trigger can be generated
- A/D converter conversion start trigger can be generated
- Module stop mode can be set

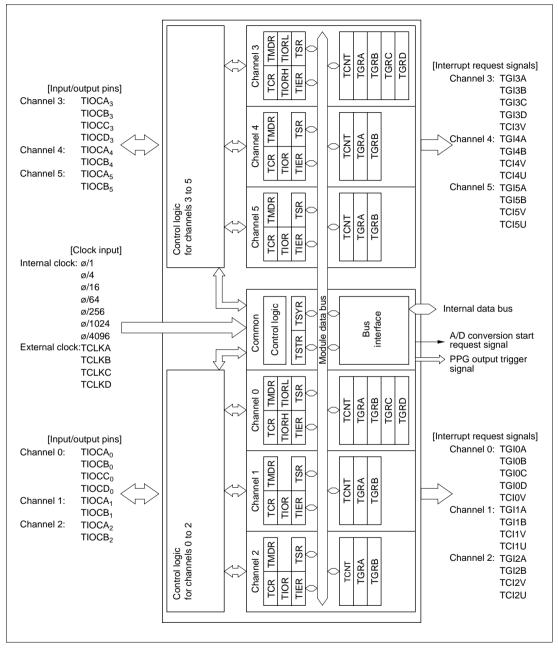


Figure 6.4 Block Diagram of TPU

6.4.3 Pins

Table 6.3 TPU Pins

Channel	Name	Symbol	I/O	Function
All	Clock input A	TCLKA	Input	External clock A input pin (Channel 1 and 5 phase counting mode A-phase input)
	Clock input B	TCLKB	Input	External clock B input pin (Channel 1 and 5 phase counting mode B-phase input)
	Clock input C	TCLKC	Input	External clock C input pin (Channel 2 and 4 phase counting mode A-phase input)
	Clock input D	TCLKD	Input	External clock D input pin (Channel 2 and 4 phase counting mode B-phase input)
0	Input capture/out compare match A0		I/O	TGR0A input capture input/output compare output/PWM output pin
	Input capture/out compare match B0		I/O	TGR0B input capture input/output compare output/PWM output pin
	Input capture/out compare match C0		I/O	TGR0C input capture input/output compare output/PWM output pin
	Input capture/out compare match D0		I/O	TGR0D input capture input/output compare output/PWM output pin
1	Input capture/out compare match A1	TIOCA ₁	I/O	TGR1A input capture input/output compare output/PWM output pin
	Input capture/out compare match B1	TIOCB ₁	I/O	TGR1B input capture input/output compare output/PWM output pin
2	Input capture/out compare match A2	TIOCA ₂	I/O	TGR2A input capture input/output compare output/PWM output pin
	Input capture/out compare match B2		I/O	TGR2B input capture input/output compare output/PWM output pin
3	Input capture/out compare match A3	TIOCA ₃	I/O	TGR3A input capture input/output compare output/PWM output pin
	Input capture/out compare match B3	TIOCB ₃	I/O	TGR3B input capture input/output compare output/PWM output pin
	Input capture/out compare match C3	TIOCC ₃	I/O	TGR3C input capture input/output compare output/PWM output pin
	Input capture/out compare match D3	TIOCD₃	I/O	TGR3D input capture input/output compare output/PWM output pin

Channel	Name	Symbol	I/O	Function
4	Input capture/out compare match A4	TIOCA ₄	I/O	TGR4A input capture input/output compare output/PWM output pin
	Input capture/out compare match B4	TIOCB ₄	I/O	TGR4B input capture input/output compare output/PWM output pin
5	Input capture/out compare match A5	TIOCA₅	I/O	TGR5A input capture input/output compare output/PWM output pin
	Input capture/out compare match B5	TIOCB₅	I/O	TGR5B input capture input/output compare output/PWM output pin

6.5 Programmable Pulse Generator

6.5.1 Features

- Maximum 16-bit data output capability
- Up to four different 4-bit outputs
- Output trigger signals can be selected
- Non-overlap margin can be set
- Can operate together with the data transfer controller (DTC) and DMA controller (DMAC)
- Inverse output can be selected
- Module stop mode can be set

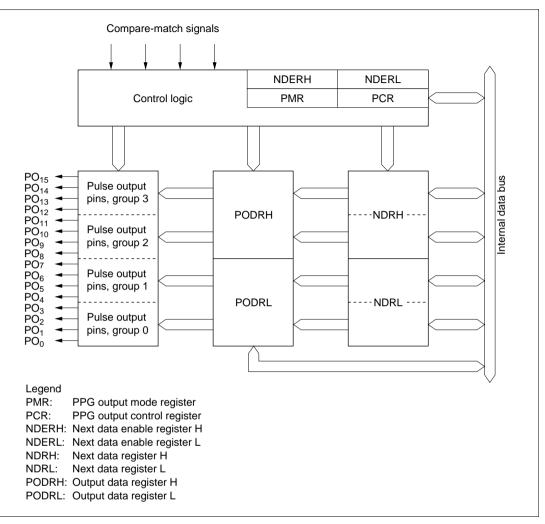


Figure 6.5 Block Diagram of PPG

6.5.3 Pins

Table 6.4 PPG Pins

Name	Symbol	I/O	Function
Pulse output 0	PO	Output	Group 0 pulse output
Pulse output 1	PO ₁	Output	
Pulse output 2	PO ₂	Output	
Pulse output 3	PO ₃	Output	
Pulse output 4	PO_4	Output	Group 1 pulse output
Pulse output 5	PO₅	Output	
Pulse output 6	PO ₆	Output	
Pulse output 7	PO ₇	Output	
Pulse output 8	PO ₈	Output	Group 2 pulse output
Pulse output 9	PO ₉	Output	
Pulse output 10	PO ₁₀	Output	
Pulse output 11	PO ₁₁	Output	
Pulse output 12	PO ₁₂	Output	Group 3 pulse output
Pulse output 13	PO ₁₃	Output	
Pulse output 14	PO ₁₄	Output	
Pulse output 15	PO ₁₅	Output	

6.6 8-Bit Timer

6.6.1 Features

- Two-channel timer using 8-bit counters as base
- Selection of four counter input clocks
- Counter clearing can be specified
- Timer output by combination of two compare match signals
- Cascaded operation possible by connecting both counter channels to form a 16-bit counter
- Three interrupt sources for each channel
- A/D converter conversion start trigger can be generated
- Module stop mode can be set

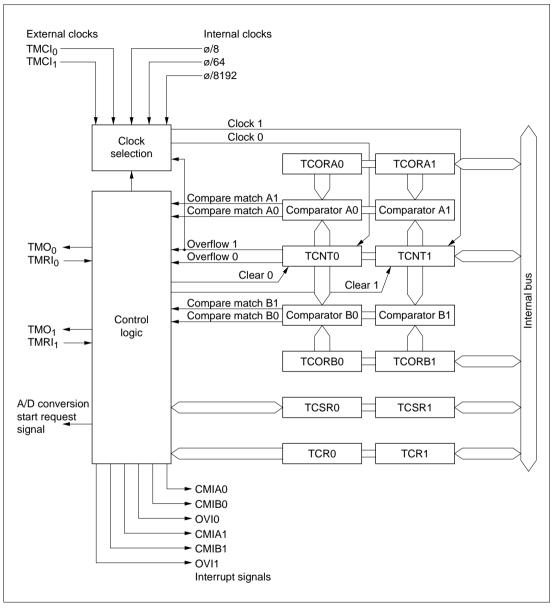


Figure 6.6 Block Diagram of 8-Bit Timer

6.6.3 Pins

Table 6.58-Bit Timer Pins

Channel	Name	Symbol	I/O	Function
0	Timer output pin 0		Output	Compare match output
	Timer clock input pin 0		Input	Counter external clock input
	Timer reset input pin 0	TMRI ₀	Input	Counter external reset input
1	Timer output pin 1	TMO₁	Output	Compare match output
	Timer clock input pin 1	TMCI₁	Input	Counter external clock input
	Timer reset input pin 1	$TMRI_1$	Input	Counter external reset input

6.7 Watchdog Timer

6.7.1 Features

- Switchable between watchdog timer mode and interval timer mode
- WDTOVF output in watchdog timer mode
- Interrupt generation when counter overflows in interval timer mode
- Selection of eight counter input clocks

6.7.2 Block Diagram

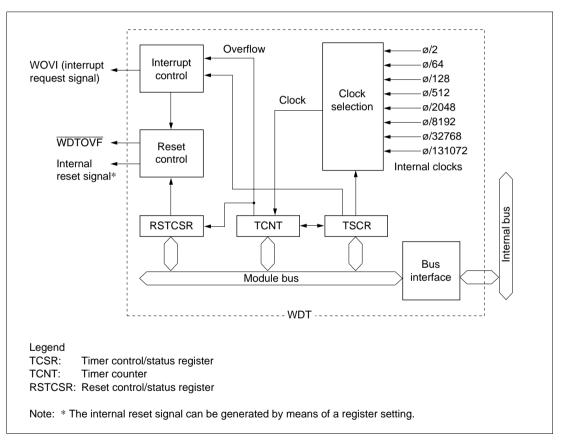


Figure 6.7 Block Diagram of WDT

6.7.3 Pins

Table 6.6 WDT Pin

Name	Symbol	I/O	Function
Watchdog timer overflow	WDTOVF	Output	Outputs counter overflow signal in watchdog timer mode

6.8 Serial Communication Interface

6.8.1 Features

- Three independent on-chip channels in the H8S/2339 and H8S/2338 Series
- Selection of synchronous or asynchronous serial communication mode
- Full-duplex communication capability
- Selection of LSB-first or MSB-first transfer
- Built-in baud rate generator allows any bit rate to be selected
- Selection of transmit/receive clock source
- DTC and DMAC can be activated by 4 interrupts (ERI, RXI, TXI, and TEI)
- Module stop mode can be set

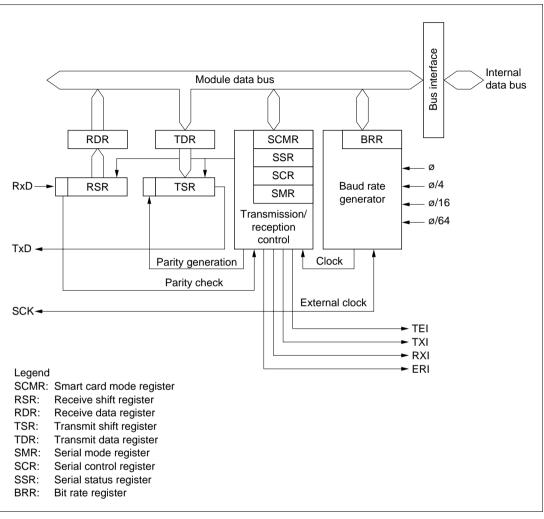


Figure 6.8 Block Diagram of SCI

6.8.3 Pins

Table 6.7 SCI Pins

Channel	Name	Symbol	I/O	Function
0	Serial clock pin	SCK ₀	I/O	SCI0 clock input/output
	Receive data pin	RxD_0	Input	SCI0 receive data input
	Transmit data pin	TxD ₀	Output	SCI0 transmit data output
1	Serial clock pin	SCK ₁	I/O	SCI1 clock input/output
	Receive data pin	RxD ₁	Input	SCI1 receive data input
	Transmit data pin	TxD ₁	Output	SCI1 transmit data output
2	Serial clock pin	SCK ₂	I/O	SCI2 clock input/output
	Receive data pin	RxD ₂	Input	SCI2 receive data input
	Transmit data pin	TxD ₂	Output	SCI2 transmit data output

6.9 Smart Card Interface

6.9.1 Features

- IC card interface conforming to ISO/IEC7816-3 supported as SCI extension function
- Switching between normal SCI and smart card interface by means of register setting
- Built-in baud rate generator allows any bit rate to be selected
- DTC and DMAC can be activated by 3 interrupts (TXI, RXI, and ERI)

6.9.2 Block Diagram

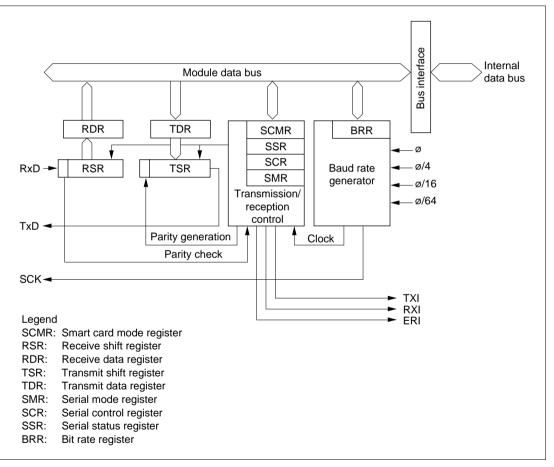


Figure 6.9 Block Diagram of Smart Card Interface

6.9.3 Pins

Channel	Name	Symbol	I/O	Function
0	Serial clock pin	SCK ₀	I/O	SCI0 clock input/output
	Receive data pin	RxD ₀	Input	SCI0 receive data input
	Transmit data pin	TxD_0	Output	SCI0 transmit data output
1	Serial clock pin	SCK1	I/O	SCI1 clock input/output
	Receive data pin	RxD ₁	Input	SCI1 receive data input
	Transmit data pin	TxD ₁	Output	SCI1 transmit data output
2	Serial clock pin	SCK ₂	I/O	SCI2 clock input/output
	Receive data pin	RxD ₂	Input	SCI2 receive data input
	Transmit data pin	TxD ₂	Output	SCI2 transmit data output

Table 6.8 Smart Card Interface Pins

6.10 A/D Converter

6.10.1 Features

- 10-bit resolution
- 12 input channels
- Settable analog conversion voltage range
- Conversion time: 6.7 µs per channel (at 20 MHz operation)
- Selection of single mode or scan mode as operating mode
- Four data registers
- Sample-and-hold function
- Three kinds of conversion start (software, timer conversion start trigger, or ADTRG pin)
- A/D conversion end interrupt request generation
- Module stop mode can be set

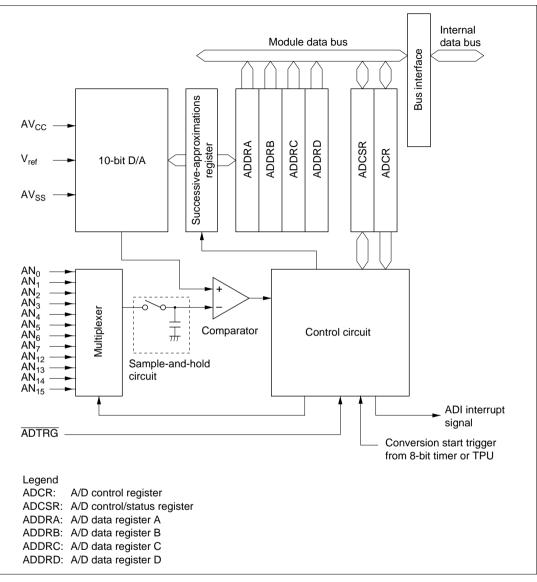


Figure 6.10 Block Diagram of A/D Converter

6.10.3 Pins

Table 6.9A/D Converter Pins

Name	Symbol	I/O	Function
Analog power supply pin	AV_{cc}	Input	Analog circuit power supply
Analog ground pin	AV _{ss}	Input	Analog circuit ground and reference voltage
Reference voltage pin	V_{ref}	Input	A/D conversion reference voltage
Analog input pin 0	AN ₀	Input	Channel set 0 (CH3 = 1) group 0 analog input
Analog input pin 1	AN ₁	Input	
Analog input pin 2	AN ₂	Input	
Analog input pin 3	AN ₃	Input	
Analog input pin 4	AN_4	Input	Channel set 1 (CH3 = 0) group 1 analog input
Analog input pin 5	AN ₅	Input	
Analog input pin 6	AN ₆	Input	
Analog input pin 7	AN ₇	Input	
Analog input pin 12	AN ₁₂	Input	Channel set 1 (CH3 = 0) group 1 analog input
Analog input pin 13	AN ₁₃	Input	
Analog input pin 14	AN ₁₄	Input	
Analog input pin 15	AN ₁₅	Input	
A/D external trigger input pin	ADTRG	Input	External trigger for starting A/D conversion

6.11 D/A Converter

6.11.1 Features

- 8-bit resolution
- Four output channels
- Maximum conversion time of 10 µs (with 20 pF capacitive load)
- Output voltage of 0 V to Vref
- D/A output hold function in software standby mode
- Module stop mode can be set

6.11.2 Block Diagram

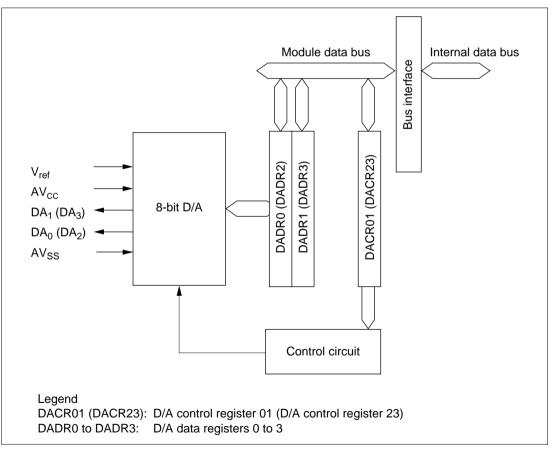


Figure 6.11 Block Diagram of D/A Converter

6.11.3 Pins

Table 6.10D/A Converter Pins

Name	Symbol	I/O	Function
Analog power supply pin	AV_{cc}	Input	Analog circuit power supply
Analog ground pin	AV_{ss}	Input	Analog circuit ground and reference voltage
Analog output pin 0	DA ₀	Output	Channel 0 analog output
Analog output pin 1	DA ₁	Output	Channel 1 analog output
Analog output pin 2	DA ₂	Output	Channel 2 analog output
Analog output pin 3	DA ₃	Output	Channel 3 analog output
Reference voltage pin	V _{ref}	Input	Analog circuit reference voltage

6.12 RAM (H8S/2339)

6.12.1 Features

- 32 kbytes of on-chip high-speed static RAM
- Connected to the CPU by a 16-bit data bus, enabling one-state access to both byte data and word data
- Can be enabled or disabled by means of the RAM enable bit (RAME) in the system control register (SYSCR)

6.12.2 Block Diagram

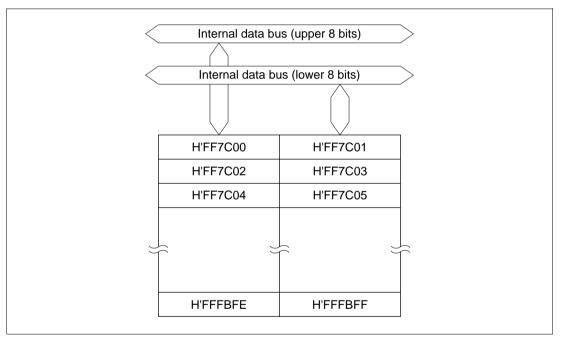


Figure 6.12 Block Diagram of RAM (32 kbytes)

6.13 RAM (H8S/2338, H8S/2337, H8S/2332)

6.13.1 Features

- Eight kbytes of on-chip high-speed static RAM
- Connected to the CPU by a 16-bit data bus, enabling one-state access to both byte data and word data
- Can be enabled or disabled by means of the RAM enable bit (RAME) in the system control register (SYSCR)

6.13.2 Block Diagram

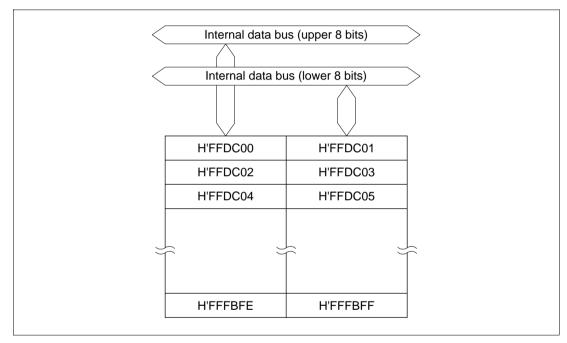


Figure 6.13 Block Diagram of RAM (8 kbytes)

6.14 ROM (H8S/2339)

6.14.1 Features

- Connected to the bus master by a 16-bit data bus, enabling one-state access to both byte data and word data
- The flash memory version (H8S/2339 F-ZTATTM) can be erased and programmed with a PROM programmer, as well as on-board

6.14.2 Block Diagrams

Figure 6.14 Block Diagram of Flash Memory (384 kbytes)

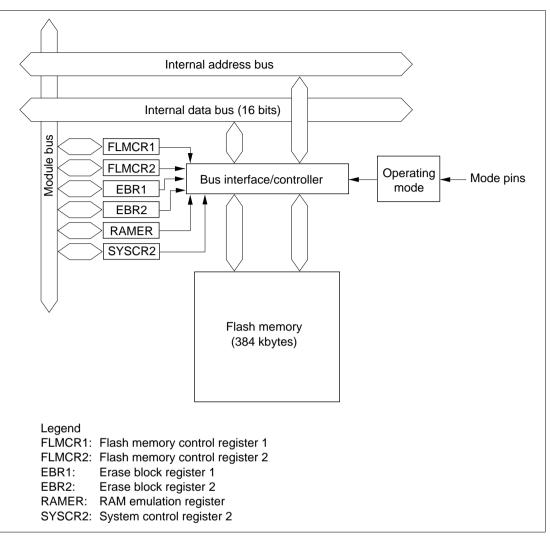


Figure 6.15 Block Diagram of Flash Memory

6.15 ROM (H8S/2338, H8S/2337)

6.15.1 Features

- Connected to the bus master by a 16-bit data bus, enabling one-state access to both byte data and word data
- The flash memory version (H8S/2338 F-ZTATTM) can be erased and programmed with a PROM programmer, as well as on-board
- The H8S/2338 has 256 kbytes, and the H8S/2337 has 128 kbytes, of on-chip mask ROM

6.15.2 Block Diagrams

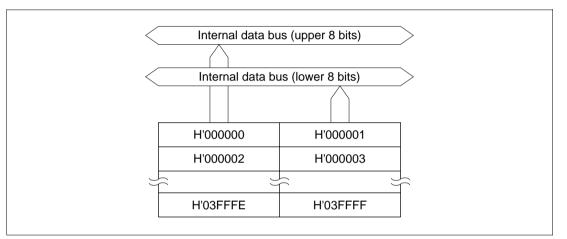


Figure 6.16 Block Diagram of Flash Memory (256 kbytes)

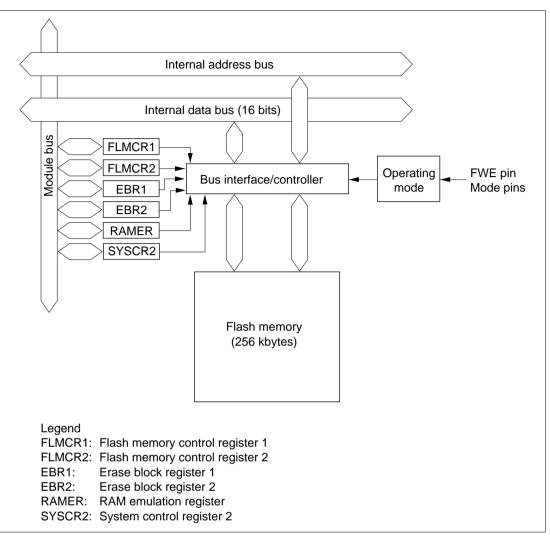
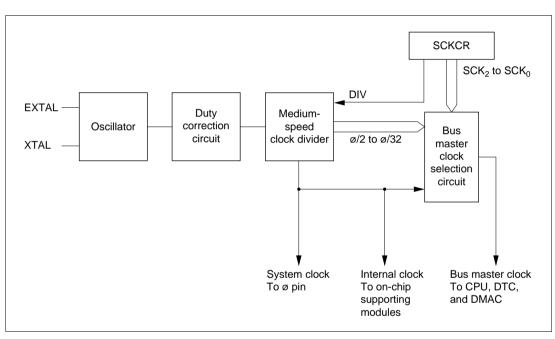



Figure 6.17 Block Diagram of Flash Memory

6.16 Clock Pulse Generator

6.16.1 Features

- Comprises an oscillator, duty correction circuit, medium-speed clock divider, and bus master clock selection circuit
- Generates system clock (ø), bus master clock, and internal clock
- Allows switching between medium-speed mode and variable clock division function

6.16.2 Block Diagram

Figure 6.18 Block Diagram of Clock Pulse Generator

Section 7 Electrical Characteristics

For electrical characteristics of the H8S/2339 F-ZTAT version, please contact Hitachi's sales office.

7.1 Electrical Characteristics of Mask ROM Version (H8S/2338, H8S/2337) and ROMless Version (H8S/2332)

7.1.1 Absolute Maximum Ratings

Table 7.1 lists the absolute maximum ratings.

 Table 7.1
 Absolute Maximum Ratings

Item	Symbol	Value	Unit
Power supply voltage	V _{cc}	–0.3 to +4.6	V
Input voltage (except port 4)	V_{in}	–0.3 to V _{cc} +0.3	V
Input voltage (port 4)	V_{in}	–0.3 to AV _{cc} +0.3	V
Reference power supply voltage	V _{ref}	–0.3 to AV _{cc} +0.3	V
Analog power supply voltage	AV_{cc}	-0.3 to +4.6	V
Analog input voltage	V _{AN}	–0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	–55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

7.1.2 DC Characteristics

Table 7.2DC Characteristics

Conditions: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^{*1}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt	Ports 1, 2, 7, 9	VT ⁻	$V_{cc} imes 0.2$	—	_	V	
trigger input voltage	$P5_0$ to $P5_3$, $P6_4$ to $P6_7$	VT⁺	_	_	$V_{cc} imes 0.7$	V	_
	PA ₄ to PA ₇	$VT^+ - VT^-$	$V_{cc} imes 0.07$	—		V	
Input high voltage	$\overline{\text{RES}}, \overline{\text{STBY}}, \text{NMI}, \\ \text{MD}_2 \text{ to } \text{MD}_0$	$V_{\rm IH}$	$V_{cc} imes 0.9$	—	V _{cc} + 0.3	V	
	EXTAL		$V_{cc} \times 0.7$	—	V _{cc} + 0.3	V	
	Ports 3, 8, B to G, $P5_4$ to $P5_7$, $P6_0$ to $P6_3$, PA_0 to PA_3		2.2	_	V _{cc} + 0.3	V	
	Port 4	_	2.2	_	$AV_{cc} + 03$	V	
Input low voltage	$\overline{\text{RES}}, \overline{\text{STBY}}, \\ \text{MD}_2 \text{ to } \text{MD}_0$	V _{IL}	-0.3	_	$V_{cc} imes 0.1$	V	
	$\label{eq:NMI} \hline $ $ NMI, EXTAL, $ $ $ $ ports 3, 4, 8, $ $ $ $ $ $ $ $ $ $ to $ $ $ $ $ $ $ $ $	_	-0.3	_	$V_{cc} \times 0.2$	V	
Output high	All output pins	V _{OH}	$V_{cc} - 0.5$	_	_	V	I _{OH} = -200 μA
voltage			V _{cc} – 1.0	—	_	V	I _{он} = –1 mA
Output low voltage	All output pins	V_{OL}	—	_	0.4	V	I _{oL} = 1.6 mA
Input leakage	RES	I _{in}	_	—	10	μΑ	$V_{in} = 0.5 \text{ to}$ $V_{cc} - 0.5 \text{ V}$
current	$\overline{\text{STBY}}$, NMI, MD ₂ to MD ₀	_	_	—	1	μΑ	_
	Port 4	_	_	_	1	μΑ	V _{in} = 0.5 to
	P5 ₄ to P5 ₇						$AV_{cc} - 0.5 V$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Three-state leakage current (off state)	Ports 1, 2, 3, 5, 6, 7 Ports 8, 9, A to G	I _{tsi}	_	_	1.0	μΑ	V_{in} = 0.5 to V_{cc} – 0.5 V
Input pull-up MOS current		-I _p	10	_	300	μΑ	$V_{in} = 0V$
Input	RES	C _{in}	_	—	30	pF	$V_{in} = 0 V$
capacitance	NMI	_	_	_	30	pF	f = 1 MHz
	All input pins except RES and NMI		_	_	15	pF	[–] T _a = 25°C
Current	Normal operation	I_{CC}^{*4}	_	43 (3.0 V)	84	mA	f = 20 MHz
dissipation*2				58 (3.3 V)	105	mA	f = 25 MHz
	Sleep mode		_	34 (3.0 V)	66	mA	f = 20 MHz
				4.6 (3.3 V)	82	mA	f = 25 MHz
	Standby mode*3		_	0.01	10	μA	$T_a \le 50^{\circ}C$
			_	—	80		50°C < T _a
Analog power	During A/D and D/A conversion	Alcc	_	0.2 (3.0 V)	2.0	mA	
supply voltage	Idle		_	0.01	5.0	μA	_
Reference power	During A/D and D/A conversion	AI_{cc}	—	2.4 (3.0 V)	6.0	mA	
supply voltage	Idle		_	0.01	5.0	μΑ	_
RAM standby	/ voltage	V_{RAM}	2.0	_		V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and AV_{ss} pins open. Connect the AV_{cc} and V_{ref} pins to V_{cc}, and the AV_{ss} pin to V_{ss}.

2. Current dissipation values are for V_{IH min} = V_{CC} - 0.5 V and V_{IL max} = 0.5 V with all output pins unloaded and all MOS input pull-ups in the off state.

3. The values are for V_{_{RAM}} \le V_{_{CC}} < 2.7 V, V_{_{IH}} min = V_{_{CC}} \times 0.9, and V_{_{IL}} max = 0.3 V.

4. I_{cc} depends on V_{cc} and f as follows:

 I_{cc} max = 1.0 (mA) + 1.15 (mA/(MHz × V)) × V_{cc} × f (normal operation)

 I_{cc} max = 1.0 (mA) + 0.90 (mA/(MHz × V)) × V_{cc} × f (sleep mode)

Table 7.3 Permissible Output Currents

Conditions: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

ltem		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	All output pins	I _{OL}	_	—	2.0	mA
Permissible output low current (total)	Total of all output pins	ΣI_{OL}	_	—	80	mA
Permissible output high current (per pin)	All output pins	—І _{он}	_	—	2.0	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - I_{OH}$	_	—	40	mA

Note: To protect chip reliability, do not exceed the output current values in table 7.3.

7.1.3 AC Characteristics

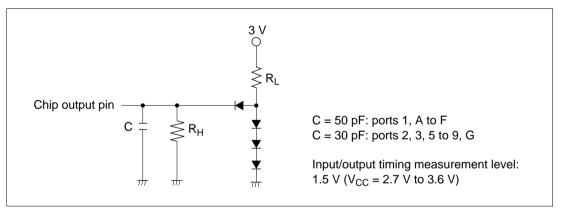


Figure 7.1 Output Load Circuit

(1) Clock Timing

Table 7.4 Clock Timing

 $\begin{array}{ll} \text{Condition A:} & V_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{V}_{\text{ref}} = 2.7 \text{ V to } \text{AV}_{\text{CC}}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = \\ & 0 \text{ V}, \ \ \phi = 2 \text{ MHz to } 20 \text{ MHz}, \text{T}_{a} = -20^{\circ}\text{C} \text{ to } 75^{\circ}\text{C} \text{ (regular specifications)}, \\ & \text{T}_{a} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (wide-range specifications)} \end{array}$

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } v_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{ } V_{SS} = AV_{SS} = 0 \mbox{ V, } \phi = 2 \mbox{ MHz to } 25 \mbox{ MHz, } T_a = -20^{\circ}\mbox{C to } 75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40^{\circ}\mbox{C to } 85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

		Con	dition A	Cone	dition B		Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
Clock cycle time	t _{cyc}	50	500	40	500	ns	Figure 7.2
Clock pulse high width	t _{ch}	20		15		ns	_
Clock pulse low width	t _{cL}	20		15		ns	_
Clock rise time	t _{Cr}	_	5	_	5	ns	_
Clock fall time	t _{cf}	—	5	_	5	ns	_
Reset oscillation stabilization time (crystal)	t _{osc1}	10	—	10	_	ms	Figure 7.3
Software standby oscillation stabilization time (crystal)	t _{osc2}	10	—	10	_	ms	
External clock output stabilization delay time	t _{DEXT}	500	—	500		μs	Figure 7.3

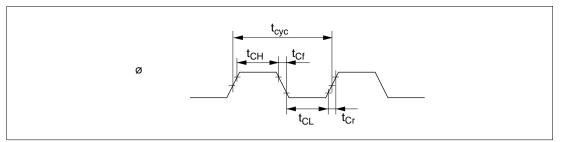


Figure 7.2 System Clock Timing

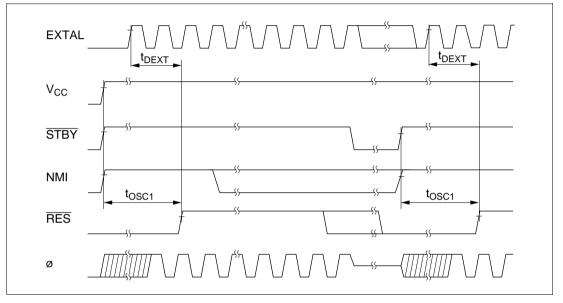


Figure 7.3 Oscillation Stabilization Timing

(2) Control Signal Timing

Table 7.5Control Signal Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } V_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{ } V_{SS} = AV_{SS} = 0 \mbox{ V, } \emptyset = 2 \mbox{ MHz to } 25 \mbox{ MHz, } T_a = -20^{\circ}\mbox{C to } 75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40^{\circ}\mbox{C to } 85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

		Con	dition A	Cond	dition B		Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{RESS}	200	_	200	_	ns	Figure 7.4
RES pulse width	t _{RESW}	20	—	20	—	t _{cyc}	
NMI setup time	t _{NMIS}	150		150		ns	Figure 7.5
NMI hold time	t _{NMIH}	10		10		_	
NMI pulse width (in recovery from software standby mode)	t _{nmiw}	200	—	200	_	_	
IRQ setup time	t _{IRQS}	150		150		ns	_
IRQ hold time	t _{IRQH}	10		10		_	
IRQ pulse width (in recovery from software standby mode)	t _{iRQW}	200	_	200	_	_	

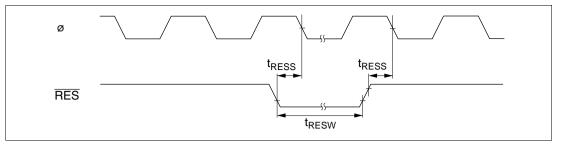


Figure 7.4 Reset Input Timing

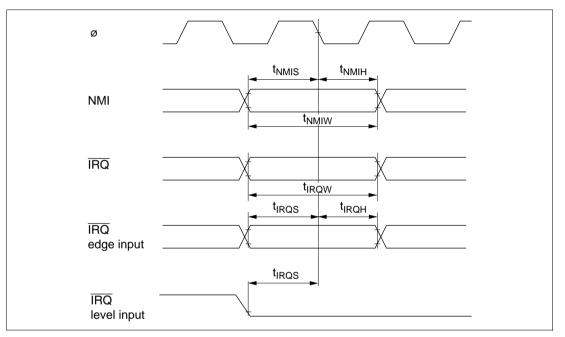


Figure 7.5 Interrupt Input Timing

(3) Bus Timing

Table 7.6 Bus Timing

 $\begin{array}{ll} \text{Condition A:} & V_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{V}_{\text{ref}} = 2.7 \text{ V to } \text{AV}_{\text{CC}}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = \\ & 0 \text{ V}, \ \ \phi = 2 \text{ MHz to } 20 \text{ MHz}, \text{T}_{a} = -20^{\circ}\text{C} \text{ to } 75^{\circ}\text{C} \text{ (regular specifications)}, \\ & \text{T}_{a} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (wide-range specifications)} \end{array}$

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } v_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{ } V_{SS} = AV_{SS} = 0 \mbox{ V, } \phi = 2 \mbox{ MHz to } 25 \mbox{ MHz, } T_a = -20^{\circ}\mbox{C to } 75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40^{\circ}\mbox{C to } 85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

		Cone	dition A	Condition B			
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Address delay time	t _{AD}	—	20		20	ns	Figures 7.6 to 7.13
Address setup time	t _{AS}	$0.5 imes t_{ m cyc} - 15$	—	$0.5 imes t_{ m cyc} - 15$	—	ns	
Address hold time	t _{AH}	$0.5 imes t_{ m cyc} - 10$	—	$0.5 imes t_{ m cyc} - 8$	—	ns	
Precharge time	t _{PCH}	$1.5 \times t_{cyc}$ - 20	—	1.5 × t _{cyc} − 15	—	ns	
CS delay time 1	t _{CSD1}	—	20	—	15	ns	_
$\overline{\text{CS}}$ delay time 2	t _{CSD2}	—	20	—	15	ns	
CS delay time 3	t _{CSD3}	—	25	—	20	ns	_
AS delay time	t _{ASD}	—	20	—	15	ns	_
RD delay time 1	t _{RSD1}	—	20	—	15	ns	_
RD delay time 2	t _{RSD2}	—	20	_	15	ns	_
CAS delay time	t _{CASD}	—	20	—	15	ns	_
Read data setup time	t _{RDS}	15	—	15	—	ns	
Read data hold time	t _{RDH}	0	—	0	—	ns	
Read data access time 1	t _{ACC1}	—	1.0 × t _{cyc} – 25	—	$1.0 \times t_{cyc} - 20$	ns	
Read data access time 2	t _{ACC2}	—	1.5 × t _{cyc} – 25	—	$1.5 \times t_{cyc} - 20$	ns	
Read data access time 3	t _{ACC3}	—	2.0 imes t _{cyc} - 25	—	$2.0 imes t_{cyc} - 20$	ns	_
Read data access time 4	t _{ACC4}	—	2.5 imes t _{cyc} – 25	—	$2.5 imes t_{cyc} - 20$	ns	
Read data access time 5	t _{ACC5}	_	$3.0 imes t_{ m cyc} - 25$	_	$\begin{array}{c} 3.0 \times \\ t_{cyc} - 20 \end{array}$	ns	_
Read data access time 6	t _{ACC6}	_	1.0 × t _{cyc} – 25	_	$1.0 imes$ $t_{cyc} - 20$	ns	

		Con	dition A	Cone	dition B		
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions
WR delay time 1	t _{WRD1}	_	20		15	ns	Figures 7.6 to 7.13
WR delay time 2	t _{WRD2}	—	20	_	15	ns	
WR pulse width 1	t _{WSW1}	1.0×	_	1.0×	_	ns	
		$t_{cyc} - 20$		t _{cyc} – 15			
WR pulse width 2	t _{WSW2}	1.5 ×	—	1.5 ×	—	ns	
		$t_{cyc} - 20$		t _{cyc} – 15			
Write data delay time	t _{WDD}	—	30	_	20	ns	
Write data setup time	t _{wps}	0.5 imes	—	0.5 imes	_	ns	
		$t_{cyc} - 20$		t _{cyc} – 15			
Write data hold time	t _{WDH}	0.5 imes	—	0.5 imes	—	ns	
		$t_{cyc} - 10$		t _{cyc} – 8			
WR setup time	t _{wcs}	0.5 imes	—	0.5 imes	—	ns	
		$t_{cyc} - 10$		t _{cyc} – 10			
WR hold time	t _{wcH}	0.5 imes	—	0.5 imes	_	ns	
		$t_{cyc} - 10$		t _{cyc} – 10			
CAS setup time	t _{CSR}	0.5 imes	—	0.5 imes	—	ns	Figure 7.10
		$t_{cyc} - 10$		t _{cyc} – 8			
WAIT setup time	t _{WTS}	30		25		ns	Figure 7.8
WAIT hold time	t _{wth}	5	_	5	_	ns	
BREQ setup time	t _{BRQS}	30	_	30	_	ns	Figure 7.14
BACK delay time	t _{BACD}	_	15		15	ns	
Bus floating time	t _{BZD}		50		40	ns	
BREQO delay time	t _{BRQOD}	—	30	—	25	ns	Figure 7.15

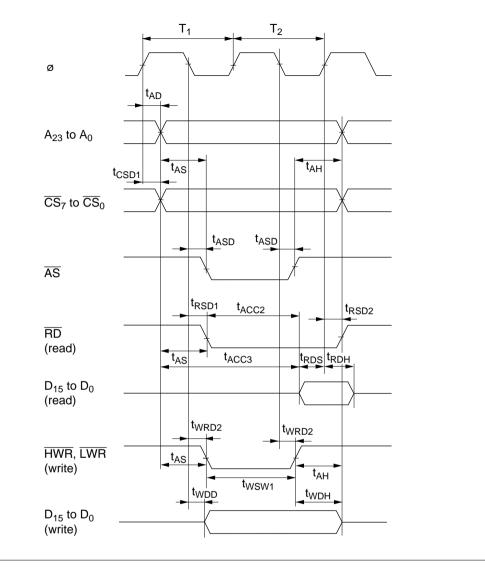


Figure 7.6 Basic Bus Timing (2-State Access)

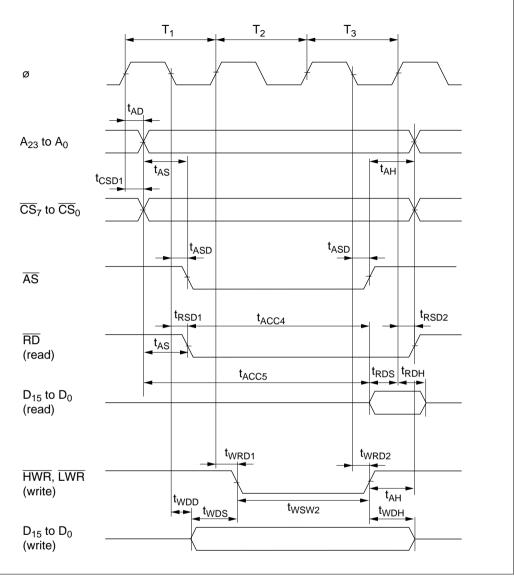


Figure 7.7 Basic Bus Timing (3-State Access)

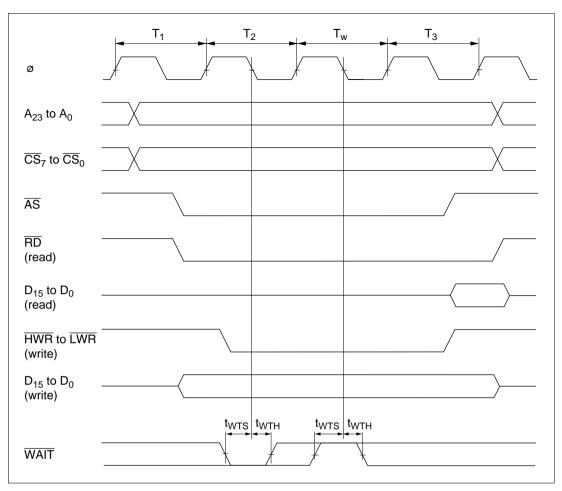


Figure 7.8 Basic Bus Timing (3-State Access, 1 Wait)

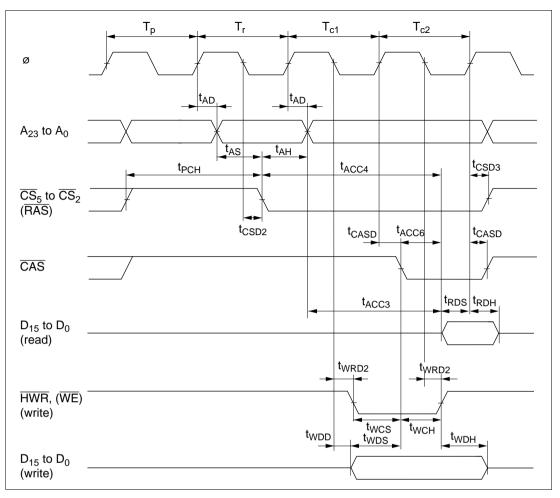


Figure 7.9 DRAM Bus Timing

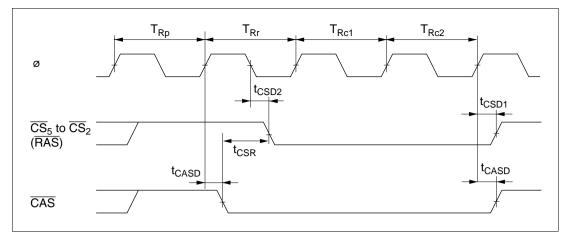


Figure 7.10 CAS-Before-RAS Refresh Timing

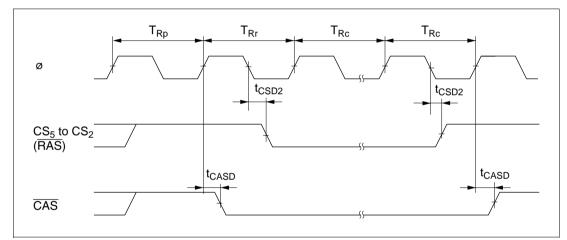


Figure 7.11 Self-Refresh Timing

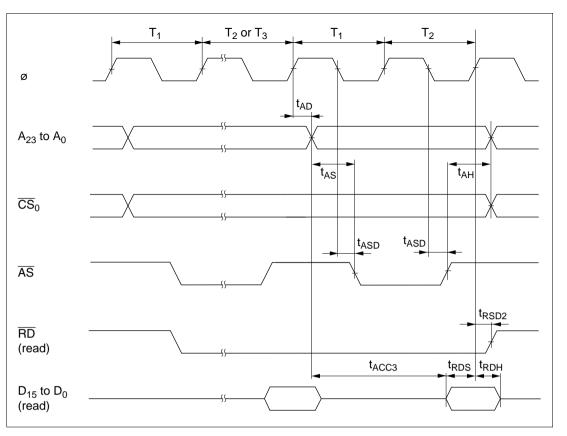


Figure 7.12 Burst ROM Access Timing (2-State Access)

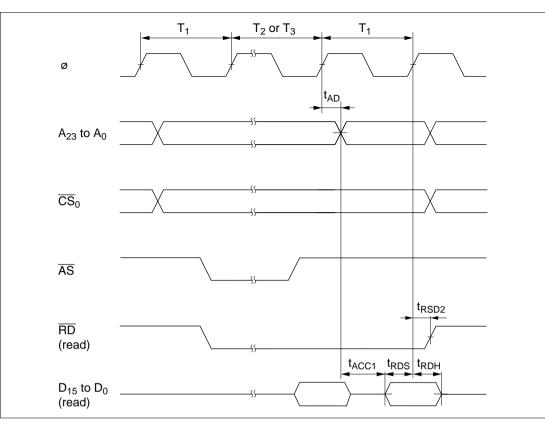
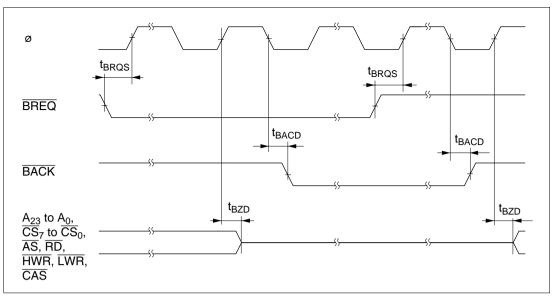



Figure 7.13 Burst ROM Access Timing (1-State Access)

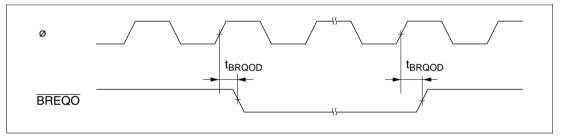


Figure 7.15 External Bus Request Output Timing

(4) DMAC Timing

Table 7.7 DMAC Timing

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } v_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{ } V_{SS} = AV_{SS} = 0 \mbox{ V, } \phi = 2 \mbox{ MHz to } 25 \mbox{ MHz, } T_a = -20^{\circ}\mbox{C to } 75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40^{\circ}\mbox{C to } 85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

		Con	dition A	Con	dition B		Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
DREQ setup time	t _{DRQS}	30	_	25	_	ns	Figure 7.19
DREQ hold time	t _{DRQH}	10	_	10	_	_	
TEND delay time	t _{TED}	—	20	—	18	_	Figure 7.18
DACK delay time 1	t _{DACD1}	—	20	—	18	ns	Figures 7.16
DACK delay time 2	t _{DACD2}	_	20		18	_	and 7.17

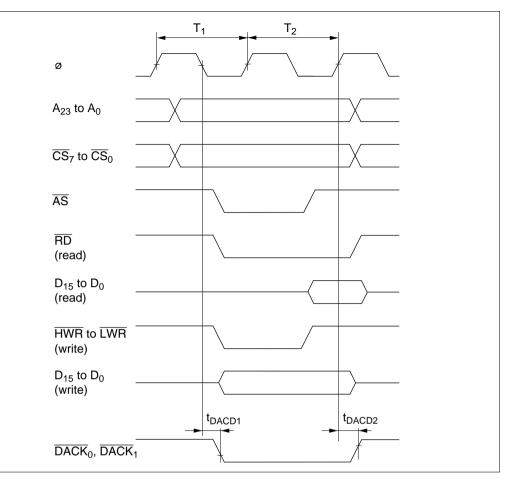


Figure 7.16 DMAC Single Address Transfer Timing (2-State Access)

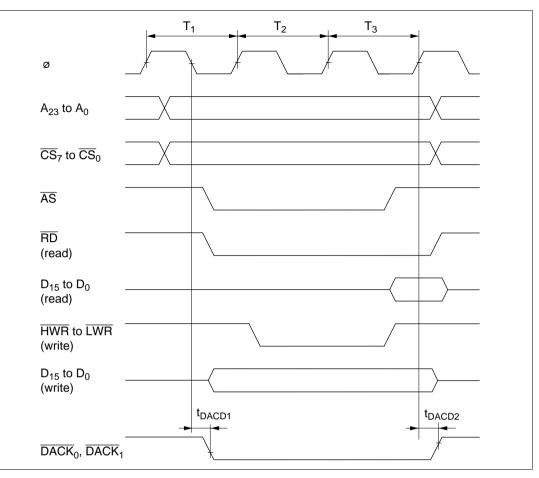
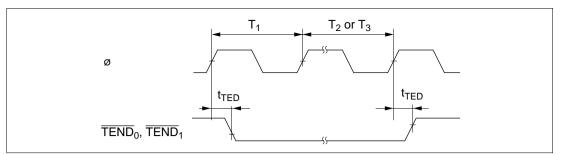



Figure 7.17 DMAC Single Address Transfer Timing (3-State Access)

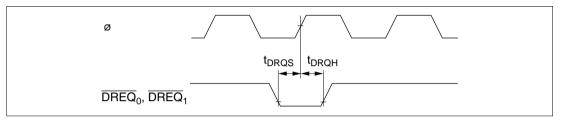
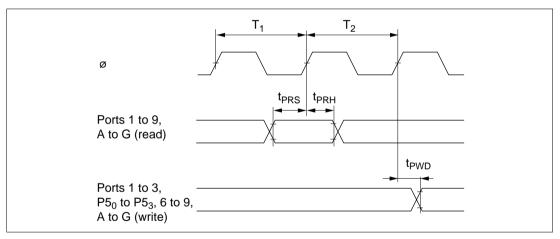


Figure 7.19 DMAC DREQ Input Timing

(5) Timing of On-Chip Supporting Modules


Table 7.8 Timing of On-Chip Supporting Modules

Condition A: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } AV_{CC} = 3.0 \mbox{ V to } 3.6 \mbox{ V, } V_{ref} = 3.0 \mbox{ V to } AV_{CC}, \mbox{ V}_{SS} = AV_{SS} = 0 \mbox{ V, } \phi = 2 \mbox{ MHz to } 25 \mbox{ MHz, } T_a = -20^{\circ}\mbox{C to } 75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40^{\circ}\mbox{C to } 85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

				Con	dition A	Con	dition B		Test
ltem			Symbol	Min	Max	Min	Max	Unit	Conditions
I/O ports	Output data c	lelay time	t _{PWD}	—	50	_	40	ns	Figure 7.20
	Input data set	tup time	t _{PRS}	30	—	25	—	_	
	Input data ho	ld time	t _{PRH}	30	_	25	_	_	
	Pulse output	delay time	t _{POD}	_	50	_	40	ns	Figure 7.21
	Timer output	delay time	t _{TOCD}	_	50	_	40	ns	Figure 7.22
	Timer input se	etup time	t _{TICS}	30	_	25	_		
	Timer clock ir	nput setup time	t _{TCKS}	30	_	25	_	ns	Figure 7.23
	Timer clock pulse width	Single-edge specification	t _{TCKWH}	1.5	_	1.5	_	t _{cyc}	_
		Both-edge specification	t _{TCKWL}	2.5	—	2.5	—	_	
8-bit timer	Timer output	delay time	t _{TMOD}	_	50	_	40	ns	Figure 7.24
	Timer reset in	nput setup time	t _{TMRS}	30		25	_	ns	Figure 7.26
	Timer clock ir	nput setup time	t _{TMCS}	30	_	25	_	ns	Figure 7.25
	Timer clock pulse width	Single-edge specification	t _{TMCWH}	1.5	_	1.5	_	t _{cyc}	_
		Both-edge specification	t _{TMCWL}	2.5	_	2.5	—	_	
WDT	Overflow outp	out delay time	t _{WOVD}	_	50	_	40	ns	Figure 7.27

				Con	dition A	Con	dition B		Test
ltem			Symbol	Min	Max	Min	Max	Unit	Conditions
SCI	Input clock	Asynchronous	t _{Scyc}	4	—	4	_	t _{cyc}	Figure 7.28
	cycle	Synchronous		6	—	6	—	_	
	Input clock p	ulse width	t _{sckw}	0.4	0.6	0.4	0.6	t _{Scyc}	_
	Input clock ris	se time	t _{SCKr}	—	1.5	—	1.5	t _{cyc}	
	Input clock fa	all time	t _{SCKf}	—	1.5	—	1.5		
	Transmit data	a delay time	t _{TXD}	—	50	—	40	ns	Figure 7.29
	Receive data (synchronous	•	t _{RXS}	50	_	40	_	ns	
	Receive data (synchronous		t _{RXH}	50	_	40	_	ns	_
A/D converter	Trigger input	setup time	t _{TRGS}	30	_	30	_	ns	Figure 7.30

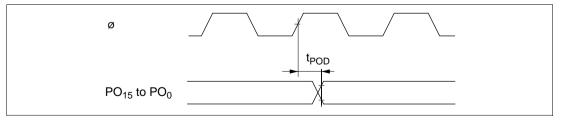


Figure 7.21 PPG Output Timing

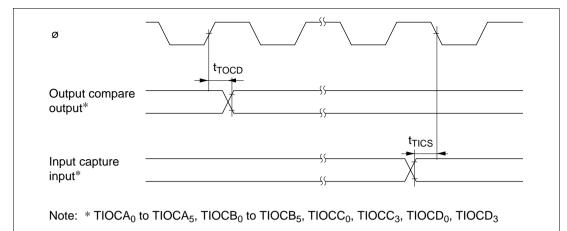


Figure 7.22 TPU Input/Output Timing

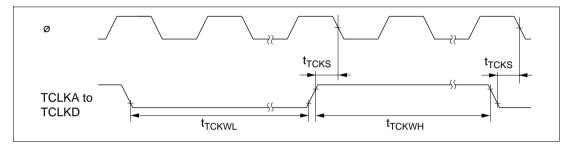


Figure 7.23 TPU Clock Input Timing

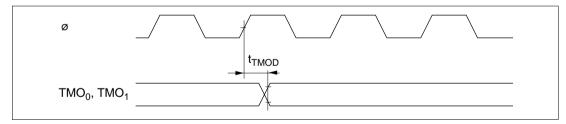
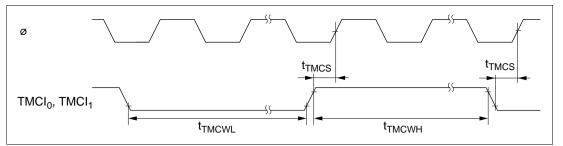
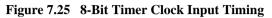
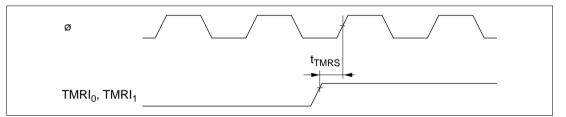
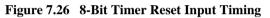






Figure 7.24 8-Bit Timer Output Timing

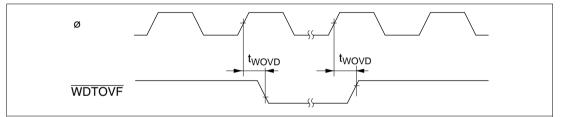


Figure 7.27 WDT Output Timing

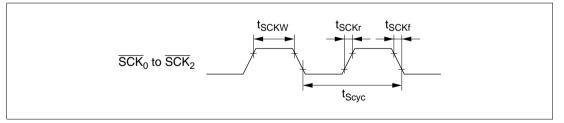


Figure 7.28 SCK Clock Input Timing

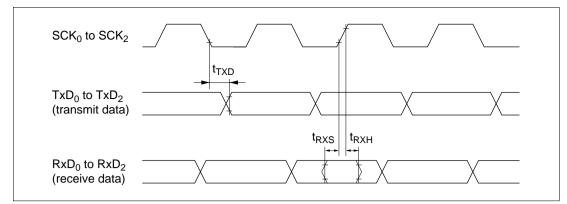


Figure 7.29 SCI Input/Output Timing (Synchronous Mode)

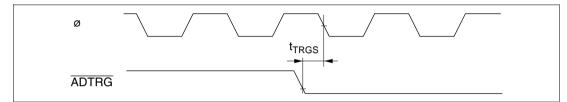


Figure 7.30 A/D Converter External Trigger Input Timing

7.1.4 A/D Conversion Characteristics

Table 7.9 A/D Conversion Characteristics

 $\begin{array}{ll} \text{Condition A:} & V_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{V}_{\text{ref}} = 2.7 \text{ V to } \text{AV}_{\text{CC}}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = \\ & 0 \text{ V}, \ \ \phi = 2 \text{ MHz to } 20 \text{ MHz}, \text{T}_{a} = -20^{\circ}\text{C} \text{ to } 75^{\circ}\text{C} \text{ (regular specifications)}, \\ & \text{T}_{a} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (wide-range specifications)} \end{array}$

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Conditio	on A	Condition B			
Item	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	10	10	10	10	10	10	Bits
Conversion time	6.7	_	—	10.6	—	—	μs
Analog input capacitance	—	—	20	_	—	20	pF
Permissible signal source impedance	—	—	5	—	—	5	kΩ
Nonlinearity error	—	_	±5.5	_	—	±5.5	LSB
Offset error	—	_	±5.5	_	—	±5.5	LSB
Full-scale error	_	_	±5.5	_	—	±5.5	LSB
Quantization error	_	±0.5	—	—	±0.5	—	LSB
Absolute accuracy	—	_	±6.0	—	—	±6.0	LSB

7.1.5 D/A Conversion Characteristics

Table 7.10 D/A Conversion Characteristics

 $\begin{array}{ll} \text{Condition A:} & V_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{\text{CC}} = 2.7 \text{ V to } 3.6 \text{ V}, \text{V}_{\text{ref}} = 2.7 \text{ V to } \text{AV}_{\text{CC}}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = \\ & 0 \text{ V}, \ \ \phi = 2 \text{ MHz to } 20 \text{ MHz}, \text{T}_{a} = -20^{\circ}\text{C} \text{ to } 75^{\circ}\text{C} \text{ (regular specifications)}, \\ & \text{T}_{a} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (wide-range specifications)} \end{array}$

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Conditio	on A		Condition B		Condition B			Test
ltem	Min	Тур	Max	Min	Тур	Max	Unit	Conditions		
Resolution	8	8	8	8	8	8	Bits			
Conversion time	_	_	10	—	_	10	μs	20 pF capacitive load		
Absolute accuracy	_	±2.0	±3.0	—	±2.0	±3.0	LSB	2 M resistive load		
	_	—	±2.0	_	—	±2.0	LSB	4 M resistive load		

7.2 Electrical Characteristics of F-ZTAT Version (H8S/2338)

7.2.1 Absolute Maximum Ratings

Table 7.11 Absolute Maximum Ratings

- Preliminary -

Item	Symbol	Value	Unit
Power supply voltage	V _{cc}	-0.3 to +4.3	V
Input voltage (FWE)	V _{in}	–0.3 to V_{cc} +0.3	V
Input voltage (except port 4)	V _{in}	-0.3 to V _{cc} +0.3	V
Input voltage (port 4)	V _{in}	–0.3 to AV _{cc} +0.3	V
Reference power supply voltage	V _{ref}	–0.3 to AV _{cc} +0.3	V
Analog power supply voltage	AV_{cc}	-0.3 to +4.3	V
Analog input voltage	V _{AN}	–0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75*	°C
		Wide-range specifications: -40 to +85*	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

Note: * The operating temperature ranges for flash memory programming/erasing are as follows: $T_a = 0^{\circ}C$ to +75°C (regular specifications), $T_a = 0^{\circ}C$ to +85°C (wide-range specifications).

7.2.2 DC Characteristics

Table 7.12 DC Characteristics

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}^{*1}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (widerange specifications)

Item		Symbol	Min	Тур	Мах	Unit	Test Conditions
Schmitt	Ports 1, 2, 7, 9	VT ⁻	$V_{\text{cc}} \times 0.2$		—	V	
trigger input voltage	$P5_0$ to $P5_3$ $P6_4$ to $P6_7$	VT ⁺	_	—	$V_{cc} imes 0.7$	V	_
	PA ₄ to PA ₇	$VT^+ - VT^-$	$V_{\text{cc}} \times 0.07$	_	_	V	
Input high voltage	$\overline{\text{RES}}$, $\overline{\text{STBY}}$, NMI, MD ₂ to MD ₀ , FWE	V _{IH}	$V_{cc} imes 0.9$	—	V _{cc} + 0.3	V	
	EXTAL	_	$V_{cc} \times 0.7$	—	V _{cc} + 0.3	V	
	Ports 3, 8, B to G, P5 ₄ to P5 ₇ , P6 ₀ to P6 ₃ , PA ₀ to PA ₃	_	2.2	_	V _{cc} + 0.3	V	_
	Port 4	_	2.2	_	AV_{cc} + 03	V	
Input low voltage	$\overline{\text{RES}}, \overline{\text{STBY}}, \\ \text{MD}_2 \text{ to } \text{MD}_0, \text{FWE}$	V _{IL}	-0.3	_	$V_{cc} imes 0.1$	V	
	$\begin{tabular}{ c c c c c }\hline NMI, EXTAL, \\ ports 3, 4, 8 \\ B to G, P5_4 to P5_7, \\ P6_0 to P6_3, \\ PA_0 to PA_3 \end{tabular}$	_	-0.3	_	$V_{cc} \times 0.2$	V	
Output high	All output pins	V _{OH}	$V_{cc} - 0.5$	_	_	V	I _{OH} = -200 μA
voltage			V _{cc} – 1.0	_	_	V	I _{он} = –1 mA
Output low voltage	All output pins	V _{OL}	—	_	0.4	V	I _{oL} = 1.6 mA
Input leakage	RES	_{in}	_	—	10.0	μΑ	$V_{in} = 0.5 \text{ to}$ $V_{cc} - 0.5 \text{ V}$
current	$\overline{\text{STBY}}$, NMI, MD ₂ to MD ₀ , FWE	_	_	—	1.0	μA	_
	Port 4, P5 ₄ to P5 ₇		_		1.0	μΑ	V_{in} = 0.5 to AV _{cc} - 0.5 V

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Three-state leakage	Ports 1, 2, 3, 5, 6, 7, 8, 9	I _{tsi}	—	_	1.0	μA	$V_{in} = 0.5 \text{ to}$ $V_{CC} - 0.5 \text{ V}$
current (off state)	Ports A to G						
Input pull-up MOS current		-I _p	10	_	300	μA	$V_{cc} = 3.0 \text{ V to}$ 3.6 V, $V_{in} = 0 \text{ V}$
Input	RES	C _{in}	_	_	30	pF	$V_{in} = 0 V$
capacitance	NMI	_	_	_	30	pF	f = 1 MHz
	All input pins except RES and NMI	_	_	—	15	pF	
Current	Normal operation	I_{CC}^{*4}		TBD (3.0 V)) TBD	mA	f = 20 MHz
dissipation*2				58 (3.3 V)	105	mA	f = 25 MHz
	Sleep mode		—	TBD (3.0 V)) TBD	mA	f = 20 MHz
				46 (3.3 V)	82	mA	f = 25 MHz
	Standby mode*3		_	0.01	10	μΑ	$T_a \leq 50^\circ C$
			_	_	80		50°C < T _a
Analog power	During A/D and D/A conversion	AI _{cc}	_	0.2 (3.0 V)	2.0	mA	
supply voltage	Idle	_	_	0.01	5.0	μA	_
Reference power	During A/D and D/A conversion	AI_{cc}	—	2.4 (3.0 V)	6.0	mA	
supply voltage	Idle	_	_	0.01	5.0	μA	_
RAM standby	/ voltage	V _{RAM}	2.0	_	_	V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and AV_{ss} pins open. Connect the AV_{cc} and V_{ref} pins to V_{cc}, and the AV_{ss} pin to V_{ss}.

2. Current dissipation values are for V_{IH min} = V_{CC} - 0.5 V and V_{IL max} = 0.5 V with all output pins unloaded and all MOS input pull-ups in the off state.

3. The values are for V_{_{RAM}} \le V_{_{CC}} < 3.0 V, V $_{_{IH}}$ min = V $_{_{CC}} \times$ 0.9, and V $_{_{IL}}$ max = 0.3 V.

4. I_{cc} depends on V_{cc} and f as follows:

 I_{cc} max = 1.0 (mA) + 1.15 (mA/(MHz × V)) × V_{cc} × f (normal operation)

 I_{cc} max = 1.0 (mA) + 0.09 (mA/(MHz × V)) × V_{cc} × f (sleep mode)

Table 7.13 Permissible Output Currents

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	All output pins	I _{OL}	—	_	2.0	mA
Permissible output low current (total)	Total of all output pins	ΣI_{OL}	_	—	80	mA
Permissible output high current (per pin)	All output pins	—І _{ОН}	_	—	2.0	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\rm OH}$	—	—	40	mA

Note: To protect chip reliability, do not exceed the output current values in table 7.13.

7.2.3 AC Characteristics

(1) Clock Timing

Table 7.14 Clock Timing

- Preliminary -

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

* In planning stage

		Condition A		Condition B			Test	
ltem	Symbol	Min	Max	Min	Max	Unit	Conditions	
Clock cycle time	t _{cyc}	50	500	40	500	ns	Figure 7.2	
Clock pulse high width	t _{сн}	20	—	15	—	ns		
Clock pulse low width	t _{cL}	20	—	15	—	ns	_	
Clock rise time	t _{Cr}		5	_	5	ns	_	
Clock fall time	t _{Cf}		5	_	5	ns	_	
Reset oscillation stabilization time (crystal)	t _{osc1}	10	—	10	_	ms	Figure 7.3	
Software standby oscillation stabilization time (crystal)	t _{osc2}	10	—	10	_	ms		
External clock output stabilization delay time	t _{DEXT}	500	—	500	_	μs	Figure 7.3	

(2) Control Signal Timing

Table 7.15 Control Signal Timing

```
- Preliminary -
```

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

* In planning stage

		Con	dition A	Cone	dition B		Test
Item	Symbol	Min	Max	Min	Мах	Unit	Conditions
RES setup time	t _{RESS}	200	_	200	_	ns	Figure 7.4
RES pulse width	t _{RESW}	20	—	20	—	t _{cyc}	
NMI setup time	t _{NMIS}	150	_	150	—	ns	Figure 7.5
NMI hold time	t _{nmih}	10	—	10	—	_	
NMI pulse width (in recovery from software standby mode)	t _{nmiw}	200	—	200	_	_	
IRQ setup time	t _{IRQS}	150	—	150	—	ns	
IRQ hold time	t _{IRQH}	10	—	10	—	_	
IRQ pulse width (in recovery from software standby mode)	t _{IRQW}	200		200	—		

(3) Bus Timing

Table 7.16 Bus Timing

- Preliminary -

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

* In planning stage

		Con	dition A Cone		dition B				
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions		
Address delay time	t _{AD}	_	20	_	20	ns	Figures 7.6 to 7.13		
Address setup time	t _{AS}	$0.5 imes t_{ m cyc} - 15$	—	0.5 imest _{cyc} — 15	—	ns			
Address hold time	t _{AH}	$0.5 imes t_{ m cyc} - 10$	—	$0.5 imes t_{ m cyc} - 8$	—	ns			
Precharge time	t _{PCH}	$1.5 \times t_{ m cyc}$ – 20	_	1.5 × t _{cyc} − 15	—	ns			
CS delay time 1	t _{CSD1}	—	20	_	15	ns			
CS delay time 2	t _{CSD2}	_	20	_	15	ns			
CS delay time 3	t _{CSD3}	—	25	_	20	ns			
AS delay time	t _{ASD}	—	20	_	15	ns			
RD delay time 1	t _{RSD1}	_	20	_	15	ns			
RD delay time 2	t _{RSD2}	_	20	_	15	ns			
CAS delay time	t _{CASD}	_	20	_	15	ns			
Read data setup time	t _{RDS}	15	_	15	_	ns			
Read data hold time	t _{RDH}	0	—	0	—	ns			
Read data access time 1	t _{ACC1}	—	1.0× t _{cyc} – 25	—	$1.0 \times t_{cyc} - 20$	ns	_		
Read data access time 2	t _{ACC2}	—	1.5 imes t _{cyc} – 25	—	$1.5 \times t_{cyc} - 20$	ns			
Read data access time 3	t _{ACC3}	—	2.0× t _{cyc} – 25	—	$2.0 \times t_{cyc} - 20$	ns	_		
Read data access time 4	t _{ACC4}	—	2.5 × t _{cyc} – 25	—	$2.5 \times t_{cyc} - 20$	ns			
Read data access time 5	t _{ACC5}	_	3.0 × t _{cyc} – 25	—	$3.0 \times t_{cyc} - 20$	ns	_		
Read data access time 6	t _{ACC6}		1.0 × t _{cyc} – 25	_	1.0 × t _{cyc} – 20	ns			

		Con	dition A	Cond	dition B		
Item	Symbol	Min	Max	Min	Max	Unit	Test Conditions
WR delay time 1	t _{wRD1}	—	20	_	15	ns	Figures 7.6 to 7.13
WR delay time 2	t _{WRD2}	_	20		15	ns	
WR pulse width 1	t _{wsw1}	1.0× t _{cyc} – 20	_	1.0 × t _{cyc} – 15	—	ns	
$\overline{\text{WR}}$ pulse width 2	t _{wsw2}	1.5 × t _{cyc} – 20	_	1.5 × t _{cyc} – 15	—	ns	
Write data delay time	t _{wDD}	_	30		20	ns	
Write data setup time	t _{wDS}	$0.5 \times t_{cyc} - 20$	—	0.5 × t _{cyc} – 15	—	ns	
Write data hold time	t_{WDH}	$0.5 imes t_{ m cyc} - 10$	_	$0.5 \times t_{cyc} - 8$	_	ns	
WR setup time	t _{wcs}	$0.5 imes t_{ m cyc} - 10$	_	$0.5 \times t_{cyc} - 10$	_	ns	
WR hold time	t _{wCH}	$0.5 imes t_{cyc} - 10$	_	0.5 × t _{cyc} – 10	_	ns	
CAS setup time	t_{CSR}	$0.5 imes t_{ m cyc} - 10$	—	$0.5 imes t_{ m cyc} - 8$	—	ns	Figure 7.10
WAIT setup time	t _{wrs}	30	—	25		ns	Figure 7.8
WAIT hold time	t _{wTH}	5	—	5	_	ns	
BREQ setup time	t _{BRQS}	30	—	30	_	ns	Figure 7.14
BACK delay time	t _{BACD}	_	15	_	15	ns	
Bus floating time	t _{BZD}	_	50		40	ns	
BREQO delay time	t _{BRQOD}	_	30		25	ns	Figure 7.15

(4) DMAC Timing

Table 7.17 DMAC Timing

- Preliminary -

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

* In planning stage

		Cone	dition A	Con	dition B		Test
Item	Symbol	Min	Max	Min	Max	Unit	Conditions
DREQ setup time	t _{DRQS}	30	_	25	_	ns	Figure 7.19
DREQ hold time	t _{DRQH}	10	—	10	—		
TEND delay time	t_{TED}	—	20	—	18	_	Figure 7.18
DACK delay time 1	t _{DACD1}		20	—	18	ns	Figures 7.16
DACK delay time 2	t _{DACD2}		20	_	18		and 7.17

(5) Timing of On-Chip Supporting Modules

Table 7.18 Timing of On-Chip Supporting Modules

-Preliminary-

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

* In planning stage

				Con	dition A	Con	dition B		Test
ltem			Symbol	Min	Max	Min	Max	Unit	Conditions
I/O ports	Output data c	lelay time	t _{PWD}	—	50	—	40	ns	Figure 7.20
	Input data set	tup time	t _{PRS}	30	—	25	—		
	Input data ho	ld time	t _{PRH}	30	—	25	—		
	Pulse output	delay time	t _{POD}	—	50	—	40	ns	Figure 7.21
	Timer output	Timer output delay time		—	50	—	40	ns	Figure 7.22
	Timer input s	etup time	t _{TICS}	30	—	25	—		
	Timer clock ir	nput setup time	t _{TCKS}	30	—	25	—	ns	Figure 7.23
	Timer clock pulse width	Single-edge specification	t _{TCKWH}	1.5	_	1.5	_	t _{cyc}	
		Both-edge specification	t _{TCKWL}	2.5	—	2.5	—	_	
8-bit timer	Timer output	delay time	t _{TMOD}	_	50	_	40	ns	Figure 7.24
	Timer reset ir	nput setup time	t _{TMRS}	30	_	25	_	ns	Figure 7.26
	Timer clock ir	nput setup time	t _{TMCS}	30	—	25	_	ns	Figure 7.25
	Timer clock pulse width	Single-edge specification	t _{TMCWH}	1.5	—	1.5	_	t _{cyc}	_
		Both-edge specification	t _{TMCWL}	2.5	—	2.5	—	_	
WDT	Overflow outp	out delay time	t _{WOVD}	_	50	_	40	ns	Figure 7.27

				Con	dition A	A Condition E			Test
ltem			Symbol	Min	Max	Min	Max	Unit	Conditions
SCI	Input clock	Asynchronous	t _{Scyc}	4	_	4	_	t _{cyc}	Figure 7.28
	cycle	Synchronous		6	_	6	_	_	
	Input clock p	ulse width	t _{SCKW}	0.4	0.6	0.4	0.6	t _{Scyc}	_
	Input clock ris	se time	t _{SCKr}	—	1.5	—	1.5	t _{cyc}	
	Input clock fa	III time	t _{SCKf}	—	1.5	—	1.5		
	Transmit data	a delay time	t _{TXD}	—	50	_	40	ns	Figure 7.29
	Receive data (synchronous	•	t _{RXS}	50	_	40	_	ns	
	Receive data hold time (synchronous)		t _{RXH}	50	_	40	—	ns	_
A/D converter	Trigger input	setup time	t _{TRGS}	30	—	30	_	ns	Figure 7.30

7.2.4 A/D Conversion Characteristics

Table 7.19 A/D Conversion Characteristics

- Preliminary -

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition A Condition B Min Max Min Max Unit Item Typ Typ Resolution 10 10 10 10 10 10 Bits Conversion time 6.7 10.6 μs Analog input 20 20 pF capacitance Permissible signal 5 5 kΩ _ ___ ___ _ source impedance Nonlinearity error ±5.5 ±5.5 LSB Offset error ±5.5 ±5.5 LSB ____ ___ _ Full-scale error ±5.5 _ ±5.5 LSB ____ ____ _ ±0.5 LSB Quantization error ±0.5 Absolute accuracy ±6.0 ±6.0 LSB ____ ____ ____ _

* In planning stage

7.2.5 D/A Conversion Characteristics

Table 7.20 D/A Conversion Characteristics

- Preliminary -

Condition A*: $V_{CC} = 2.7 \text{ V}$ to 3.6 V, $AV_{CC} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 20 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

Condition B: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to 25 MHz, $T_a = -20^{\circ}\text{C}$ to 75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to 85°C (wide-range specifications)

		Conditio	n A		Conditio	on B		Test	
Item	Min	Тур	Max	Min	Тур	Max	Unit	Conditions	
Resolution	8	8	8	8	8	8	Bits		
Conversion time	_	_	10	—	_	10	μs	20 pF capacitive load	
Absolute accuracy	_	±2.0	±3.0	—	±2.0	±3.0	LSB	2 M resistive load	
	_	_	±2.0	_	_	±2.0	LSB	4 M resistive load	

* In planning stage

7.2.6 Flash Memory Characteristics

Table 7.21 Flash Memory Characteristics

- Preliminary -

Conditions: $V_{CC} = 3.0 \text{ V}$ to 3.6 V, $AV_{CC} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = 0^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (program/erase operating temperature range: regular specifications), $T_a = 0^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (program/erase operating temperature range: wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Programming	time* ^{1, *2, *4}	t _P	_	10	200	ms/ 128 bytes	
Erase time*1, *	:3, *6	t _E	_	50	1000	ms/block	
Rewrite times		N _{WEC}	_	_	100	Times	
Programming	Wait time after SWE bit setting*1	х	1	_	_	μs	
	Wait time after PSU bit setting*1	у	50	_	_	μs	
	Wait time after P bit setting* ^{1, *4}	Z	_	—	10	μs	Wait for additional writing
			—	—	30	μs	1≤n 6
			_	_	200	μs	$7 \le n \le 1000$
	Wait time after P bit clearing*1	α	5	—		μs	
	Wait time after PSU bit clearing*1	β	5	—	_	μs	
	Wait time after PV bit setting*1	γ	4	—	—	μs	
	Wait time after H'FF dummy write*1	ε	2	—	—	μs	
	Wait time after PV bit clearing*1	η	2	—	_	μs	
	Wait time after SWE bit clearing*1	θ	100	—	—	μs	
	Maximum number of writes*1, *4	Ν	—	—	1000*5	Times	
Erasing	Wait time after SWE bit setting*1	х	1	—	—	μs	
	Wait time after ESU bit setting*1	у	100	—	—	μs	
	Wait time after E bit setting*1, *6	z	_	_	10	ms	Wait for erasing time
	Wait time after E bit clearing*1	α	10	_	_	μs	
	Wait time after ESU bit clearing*1	β	10	_		μs	
	Wait time after EV bit setting*1	γ	20	_		μs	
	Wait time after H'FF dummy write*1	ε	2	_	_	μs	
	Wait time after EV bit clearing*1	η	4	_	_	μs	
	Wait time after SWE bit clearing*1	θ	100	_	_	μs	
	Maximum number of erases*1, *6	N	_	_	100	Times	

- Notes: 1. Follow the program/erase algorithms when making the time settings.
 - 2. Programming time per 128 bytes. (Indicates the total time during which the P bit is set in flash memory control register 1 (FLMCR1). Does not include the program-verify time.)
 - 3. Time to erase one block. (Indicates the time during which the E bit is set in FLMCR1. Does not include the erase-verify time.)
 - 4. Maximum programming time

 $t_P(max) = \sum_{i=1}^{N} wait time after P bit setting (z)$

5. The maximum number of writes (N) should be set as shown below according to the actual set value of z so as not to exceed the maximum programming time ($t_P(max)$). The wait time after P bit setting (z) should be changed as follows according to the number of writes (n).

Number of writes (n)

 $1 \le n \le 6$ $z = 30 \ \mu s$

 $7 \le n \le 1000$ z = 200 µs

 $1 \le n \le 6$ $z = 10 \ \mu s$: For additional writing

 For the maximum erase time (t_∈(max)), the following relationship applies between the wait time after E bit setting (z) and the maximum number of erases (N):

 $t_{E}(max)$ = Wait time after E bit setting (z) × maximum number of erases (N)

7.3 Usage Note

Although both the F-ZTATTM and mask ROM versions fully meet the electrical specifications listed in this manual, there may be differences in the actual values of the electrical characteristics, operating margins, noise margins, and so forth, due to differences in the fabrication process, the on-chip ROM, and the layout patterns.

If the F-ZTATTM version is used to carry out system evaluation and testing, therefore, when switching to the mask ROM version the same evaluation and testing procedures should also be conducted on this version.

Section 8 Registers

8.1 List of Registers (Address Order)

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'F800	MRA	SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz	DTC	16/32*
to	SAR	_								_	bits
H'FBFF										_	
										_	
	MRB	CHNE	DISEL	CHNS	_	_	—	_		_	
	DAR									_	
										_	
	CRA	. <u>.</u>								_	
	CRB									_	
H'FE80	TCR3	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0		TPSC1	TPSC0	TPU3	16 bits
H'FE81	TMDR3	_	_	BFB	BFA	MD3	MD2	MD1	MD0	_	
H'FE82	TIOR3H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FE83	TIOR3L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_	
H'FE84	TIER3	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	_	
H'FE85	TSR3	—	—	—	TCFV	TGFD	TGFC	TGFB	TGFA	_	
H'FE86	TCNT3									_	
H'FE87										_	
H'FE88	TGR3A									_	
H'FE89										_	
H'FE8A	TGR3B									_	
H'FE8B										_	
H'FE8C	TGR3C									_	
H'FE8D										_	
H'FE8E	TGR3D									_	
H'FE8F											

Note: * Located in on-chip RAM. The bus width is 32 bits when the DTC accesses this area as register information, and 16 bits otherwise.

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FE90	TCR4	_	CCLR1	CCLR0	CKEG	CKEGO	TPSC2	TPSC1	TPSC0	TPU4	16 bits
H'FE91	TMDR4	_	_	_	_	MD3	MD2	MD1	MD0	-	
H'FE92	TIOR4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FE94	TIER4	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA		
H'FE95	TSR4	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA		
H'FE96	TCNT4										
H'FE97											
H'FE98	TGR4A										
H'FE99											
H'FE9A	TGR4B										
H'FE9B											
H'FEA0	TCR5	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU5	16 bits
H'FEA1	TMDR5	_	_	_	_	MD3	MD2	MD1	MD0		
H'FEA2	TIOR5	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FEA4	TIER5	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA		
H'FEA5	TSR5	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA		
H'FEA6	TCNT5										
H'FEA7											
H'FEA8	TGR5A										
H'FEA9											
H'FEAA	TGR5B										
H'FEAB											
H'FEB0	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	Ports	8 bits
H'FEB1	P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR		
H'FEB2	P3DDR	_	_	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR		
H'FEB4	P5DDR	_	_	_	_	P53DDR	P52DDR	P51DDR	P50DDR		
H'FEB5	P6DDR	P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR		
H'FEB6	P7DDR	_	_	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR		
H'FEB7	P8DDR	_	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR		
H'FEB8	P9DDR	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	_	_		

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FEB9	PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR	Ports	8 bits
H'FEBA	PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR	-	
H'FEBB	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR	-	
H'FEBC	PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	-	
H'FEBD	PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	-	
H'FEBE	PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	-	
H'FEBF	PGDDR	_	_	_	PG4DDR	PG3DDF	PG2DDR	PG1DDR	PG0DDF	R	
H'FEC4	IPRA	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	Interrupt	8 bits
H'FEC5	IPRB	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	controller	
H'FEC6	IPRC	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FEC7	IPRD	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FEC8	IPRE	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FEC9	IPRF	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECA	IPRG	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECB	IPRH	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECC	IPRI	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECD	IPRJ	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FECE	IPRK	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	-	
H'FED0	ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bus controller	16 bits
H'FED1	ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	_	
H'FED2	WCRH	W71	W70	W61	W60	W51	W50	W41	W40		
H'FED3	WCRL	W31	W30	W21	W20	W11	W10	W01	W00		
H'FED4	BCRH	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	RMTS2	RMTS1	RMTS0	_	
H'FED5	BCRL	BRLE	BREQOE	EAE	_	DDS	_	WDBE	WAITE		
H'FED6	MCR	TPC	BE	RCDM	_	MXC1	MXC0	RLW1	RLW0		
H'FED7	DRAMCR	RFSHE	RCW	RMODE	CMF	CMIE	CKS2	CKS1	CKS0	_	
H'FED8	RTCNT									_	
H'FED9	RTCOR									_	
H'FEDB	RAMER*	_				RAMS	RAM2	RAM1	RAM0		

Note: * Valid only in F-ZTAT version.

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FEE0	MAR0AH	_	_	_	_	_	_	_	_	DMAC	16 bits
H'FEE1										_	
H'FEE2	MAR0AL										
H'FEE3	_										
H'FEE4	IOR0A										
H'FEE5										_	
H'FEE6	ETCR0A	_								_	
H'FEE7											
H'FEE8	MAR0BH	_	—	—	—		—	—	—	_	
H'FEE9										_	
H'FEEA	MAR0BL										
H'FEEB										_	
H'FEEC	IOR0B	_								_	
H'FEED											
H'FEEE	ETCR0B	_								_	
H'FEEF										_	
H'FEF0	MAR1AH		_	_	_		—	_	—	_	
H'FEF1										_	
H'FEF2	MAR1AL									_	
H'FEF3										_	
H'FEF4	IOAR1A									_	
H'FEF5										_	
H'FEF6	ETCR1A									_	
H'FEF7										_	
H'FEF8	MAR1BH		_	_	_		_	_	—	_	
H'FEF9										_	
H'FEFA	MAR1BL									_	
H'FEFB										_	
H'FEFC	IOAR1B									_	
H'FEFD										_	
H'FEFE	ETCR1B									_	
H'FEFF											

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF00	DMAWER	—	_	_	_	WE1B	WE1A	WE0B	WE0A	DMAC	8 bits
H'FF01	DMATCR	_	_	TEE1	TEE0	_	_	_	_	_	
H'FF02	DMACR0A	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	16 bits
		DTSZ	SAID	SAIDE	BLKDIR	BLKE	_	_	_	Full address mode	_
H'FF03	DMACR0B	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	_
		_	DAID	DAIDE	_	DTF3	DTF2	DTF1	DTF0	Full address mode	_
H'FF04	DMACR1A	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	_
		DTSZ	SAID	SAIDE	BLKDIR	BLKE	_	_	_	Full address mode	_
H'FF05	DMACR1B	DTSZ	DTID	RPE	DTDIR	DTF3	DTF2	DTF1	DTF0	Short address mode	_
		_	DAID	DAIDE	_	DTF3	DTF2	DTF1	DTF0	Full address mode	
H'FF06	DMABCRH	FAE1	FAE0	SAE1	SAE0	DTA1B	DTA1A	DTA0B	DTA0A	Short address mode	_
		FAE1	FAE0		_	DTA1	_	DTA0	_	Full address mode	
H'FF07	DMABCRL	DTE1B	DTE1A	DTE0B	DTE0A	DTIE1B	DTIE1A	DTIE0B	DTIE0A	Short address mode	_
		DTME1	DTE1	DTME0	DTE0	DTIE1B	DTIE1A	DTIE0B	DTIE0A	Full address mode	_
H'FF2C	ISCRH	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA	Interrupt	8 bits
H'FF2D	ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA	controller	
H'FF2E	IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E	_	
H'FF2F	ISR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F	_	
H'FF30 to H'FF35	DTCER	DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0	DTC	8 bits
H'FF37	DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0	1	
H'FF38	SBYCR	SSBY	STS2	STS1	STS0	OPE	_	_	IRQ37S	Power-down mode	8 bits
H'FF39	SYSCR	_	_	INTM1	INTM0	NMIEG	LWROD	IRQPAS	RAME	MCU	8 bits

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FF3A	SCKCR	PSTOP	_	DIV	_	_	SCK2	SCK1	SCK0	Clock pulse generator	8 bits
H'FF3B	MDCR	_	_	_	_	_	MDS2	MDS1	MDS0	MCU	8 bits
H'FF3C	MSTPCRH	MSTP15	MSTP14	MSTP13	MSTP12	MSTP11	MSTP10	MSTP9	MSTP8	Power-down	8 bits
H'FF3D	MSTPCRL		MSTP6	MSTP5	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0	mode	
H'FF42	SYSCR*2	_	_	_	_	FLSHE	_	_	_	MCU	8 bits
H'FF44	Reserved	_	_	_	_	_	_	_	_	Reserved	_
H'FF45	PFCR1	_	_	_	_	A23E	A22E	A21E	A20E	Port	8 bits
H'FF46	PCR	G3CMS1	G3CMS0	G2CMS1	G2CMS0	G1CMS1	G1CMS0	G0CMS1	GOCMSO	PPG	8 bits
H'FF47	PMR	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV	_	
H'FF48	NDERH	NDER15	NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8	_	
H'FF49	NDERL	NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0	_	
H'FF4A	PODRH	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8	_	
H'FF4B	PODRL	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0	_	
H'FF4C ^{*1}	NDRH	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8	_	
H'FF4D ^{*1}	NDRL	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0	_	
H'FF4E ^{*1}	NDRH	_	_	_	_	NDR11	NDR10	NDR9	NDR8	_	
H'FF4F ^{*1}	NDRL	_	_	_	_	NDR3	NDR2	NDR1	NDR0	_	
H'FF50	PORT1	P17	P16	P15	P14	P13	P12	P11	P10	Ports	8 bits
H'FF51	PORT2	P27	P26	P25	P24	P23	P22	P21	P20	_	
H'FF52	PORT3	_	_	P35	P34	P33	P32	P31	P30	_	
H'FF53	PORT4	P47	P46	P45	P44	P43	P42	P41	P40	_	
H'FF54	PORT5	P57	P56	P55	P54	P53	P52	P51	P50	-	
H'FF55	PORT6	P67	P66	P65	P64	P63	P62	P61	P60	-	
H'FF56	PORT7	_	_	P75	P74	P73	P72	P71	P70	-	
H'FF57	PORT8	_	P86	P85	P84	P83	P82	P81	P80	-	
H'FF58	PORT9	P97	P96	P95	P94	P93	P92	_	_	-	

Notes: 1. If the pulse output group 2 and pulse output group 3 output triggers are the same according to the PCR setting, the NDRH address will be H'FF4C, and if different, the address of NDRH for group 2 will be H'FF4E, and that for group 3 will be H'FF4C. Similarly, if the pulse output group 0 and pulse output group 1 output triggers are the same according to the PCR setting, the NDRL address will be H'FF4D, and if different, the address of NDRL for group 0 will be H'FF4F, and that for group 1 will be H'FF4D.

2. Valid only in F-ZTAT version

HFF59 PORTA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 Ports 8 b HFF5A PORTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 HFF5B PORTC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 HFF5D PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 HFF5D PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 HFF5D PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 HFF52 PORTG - - PG4 PG3 PG2 PG1 PD0 HFF64 PDR P27DR P26DR P25DR P21DR P21DR P20DR HFF64 P50R - - - P53DR P51DR P50DR	Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
HFF5B PORTC PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 HFF5C PORTD PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 HFF5C PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 HFF5E PORTE PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 HFF61 PDR P17DR P16DR P15DR P14DR P13DR P12DR P11DR P10DR HFF62 P3DR - - P35DR P34DR P33DR P32DR P31DR P30DR HFF64 P5DR - - P35DR P34DR P33DR P32DR P31DR P30DR HFF65 P6DR P67DR P66DR P65DR P64DR P63DR P62DR P61DR P60DR HFF66 P7DR - P75DR P74DR P33DR<	H'FF59	PORTA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	Ports	8 bits
HFF5C PORTD PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 HFF5D PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 HFF5E PORTF PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 HFF5F PORTG - - - PG4 PG3 PG2 PG1 PG0 HFF5F PORTG - - - PG4 PG3 PG2 PG1 PG0 HFF60 P1DR P17DR P16DR P15DR P14DR P13DR P12DR P13DR P10DR HFF61 P2DR P27DR P26DR P25DR P24DR P33DR P32DR P31DR P30DR HFF64 P5DR - - - P53DR P52DR P51DR P50DR HFF66 P6DR P67DR P66DR P65DR P64DR P63DR P	H'FF5A	PORTB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	-	
HFF5D PORTE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0 HFF5E PORTF PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 HFF5F PORTG - - - PG4 PG3 PG2 PG1 PG0 HFF60 P1DR P17DR P16DR P15DR P14DR P13DR P12DR P17DR P16DR P15DR P14DR P13DR P12DR P10DR HFF61 P2DR P27DR P26DR P25DR P24DR P33DR P32DR P31DR P30DR HFF64 P5DR - - - P35DR P32DR P32DR P31DR P30DR HFF65 P6DR P67DR P66DR P65DR P64DR P63DR P62DR P61DR P60DR HFF66 P7DR - - - P75DR P74DR P73DR P72DR P70DR <td< td=""><td>H'FF5B</td><td>PORTC</td><td>PC7</td><td>PC6</td><td>PC5</td><td>PC4</td><td>PC3</td><td>PC2</td><td>PC1</td><td>PC0</td><td>-</td><td></td></td<>	H'FF5B	PORTC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	-	
H'FF5E PORTF PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0 H'FF5F PORTG - - - PG4 PG3 PG2 PG1 PG0 H'FF60 P1DR P17DR P16DR P15DR P14DR P13DR P12DR P11DR P10DR H'FF61 P2DR P27DR P26DR P25DR P24DR P23DR P22DR P21DR P20DR H'FF62 P3DR - - P35DR P34DR P33DR P32DR P31DR P30DR H'FF64 P5DR - - - P P53DR P62DR P61DR P60DR H'FF65 P6DR P67DR P66DR P65DR P64DR P63DR P62DR P61DR P60DR H'FF66 P7DR - - P75DR P74DR P73DR P72DR P71DR P70DR H'FF66 P3DR P37DR P64DR P63DR </td <td>H'FF5C</td> <td>PORTD</td> <td>PD7</td> <td>PD6</td> <td>PD5</td> <td>PD4</td> <td>PD3</td> <td>PD2</td> <td>PD1</td> <td>PD0</td> <td>-</td> <td></td>	H'FF5C	PORTD	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	-	
HFF5F PORTG PG4 PG3 PG2 PG1 PG0 HFF60 P1DR P1DR P1DR P15DR P14DR P13DR P12DR P11DR P10DR HFF61 P2DR P2TDR P26DR P25DR P24DR P23DR P22DR P21DR P20DR HFF62 P3DR - P35DR P34DR P33DR P32DR P31DR P30DR H'FF64 P5DR - - P53DR P52DR P51DR P50DR H'FF65 P6DR P67DR P66DR P65DR P64DR P63DR P62DR P61DR P60DR H'FF66 P7DR - - P75DR P74DR P73DR P72DR P71DR P60DR H'FF66 P3DR P3DR P3DR P3DR P3DR P3DR P30DR P30DR H'FF66 P3DR P3DR P3DR P3DR P3DR P3DR	H'FF5D	PORTE	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	_	
H'FF60P1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRH'FF61P2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRH'FF62P3DRP35DRP34DRP33DRP32DRP31DRP30DRH'FF64P5DRP53DRP52DRP51DRP50DRH'FF65P6DRP67DRP66DRP66DRP64DRP63DRP62DRP61DRP60DRH'FF66P7DRP75DRP74DRP73DRP72DRP71DRP70DRH'FF66P7DR-P86DRP65DRP64DRP63DRP62DRP61DRP60DRH'FF66P9DRP97DRP96DRP95DRP74DRP73DRP72DRP71DRP70DRH'FF68P9DRP97DRP96DRP95DRP94DRP93DRP92DRH'FF64PBDRP87DRP86DRP85DRP84DRP83DRP82DRP81DRP80DRH'FF64PBDRP67DRP66DRP55DRP44DRP33DRP22DRP01DRP00DRH'FF66PCDRPC7DRP66DRP55DRP44DRP33DRP22DRP1DRP00DRH'FF66PEDRPE7DRP66DRP55DRP44DRP33DRP22DRP1DRP00DRH'FF66PEDRPE7DRP66DRP55DRP44DRP53DRP22DRP1DRP00DR </td <td>H'FF5E</td> <td>PORTF</td> <td>PF7</td> <td>PF6</td> <td>PF5</td> <td>PF4</td> <td>PF3</td> <td>PF2</td> <td>PF1</td> <td>PF0</td> <td></td> <td></td>	H'FF5E	PORTF	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0		
H'FF61P2DRP27DRP26DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRH'FF62P3DRP35DRP34DRP33DRP32DRP31DRP30DRH'FF64P5DRP53DRP52DRP51DRP50DRH'FF64P6DRP67DRP66DRP65DRP64DRP63DRP62DRP61DRP60DRH'FF66P7DRP75DRP74DRP73DRP72DRP71DRP70DRH'FF66P7DR-P86DRP85DRP84DRP83DRP82DRP81DRP80DRH'FF66P9DRP97DRP96DRP95DRP94DRP93DRP92DRH'FF64P9DRP97DRP96DRP35DRP44DRPA3DRPA2DRPA1DRPA0DRH'FF64PBDRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRH'FF64PBDRPB7DRPB6DRPD5DRPC4DRPC3DRPC2DRPC1DRPC0DRH'FF65PCDRPC7DRPC6DRPC5DRPC4DRPC3DRPE2DRPE1DRPE0DRH'FF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DR<	H'FF5F	PORTG	_	_	_	PG4	PG3	PG2	PG1	PG0		
HIFF62P3DR——P35DRP34DRP33DRP32DRP31DRP30DRHIFF62P5DR————P53DRP52DRP51DRP50DRHIFF65P60DRP67DRP66DRP65DRP64DRP63DRP62DRP61DRP60DRHIFF66P7DR——P75DRP74DRP73DRP72DRP71DRP70DRHIFF67P8DR—P86DRP85DRP84DRP83DRP82DRP81DRP80DRHIFF68P9DRP97DRP96DRP95DRP94DRP93DRP92DR——HIFF64P8DRP97DRP96DRP95DRP44DRPA3DRPA2DRPA1DRPA0DRHIFF65PADRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRHIFF64PBDRP87DRP86DRPB5DRPB4DRPB3DRPB2DRPD1DRPD0DRHIFF65PCDRPC7DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRHIFF66PDDRPD7DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRHIFF66PFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPE1DRPE0DRHIFF66PGDR————PG4DRPG3DRPG2DRPG1DRPG0DRHIFF66PGDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DR </td <td>H'FF60</td> <td>P1DR</td> <td>P17DR</td> <td>P16DR</td> <td>P15DR</td> <td>P14DR</td> <td>P13DR</td> <td>P12DR</td> <td>P11DR</td> <td>P10DR</td> <td>_</td> <td></td>	H'FF60	P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	_	
H'FF64P5DRP53DRP52DRP51DRP50DRH'FF65P60DRP67DRP66DRP66DRP66DRP64DRP63DRP62DRP61DRP60DRH'FF66P7DRP75DRP74DRP73DRP72DRP71DRP70DRH'FF67P8DR-P86DRP85DRP84DRP83DRP82DRP81DRP80DRH'FF68P9DRP97DRP96DRP95DRP94DRP93DRP92DRH'FF68P9DRP97DRP96DRP95DRP44DRPA3DRPA2DRPA1DRPA0DRH'FF68PADRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPB1DRPB0DRH'FF64PBDRPB7DRP66DRPE5DRPE4DRPC3DRPC2DRPC1DRPC0DRH'FF66PCDRPC7DRPC6DRPC5DRPC4DRPC3DRP2DRPD1DRPD0DRH'FF60PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF61PEDRPE7DRPF6DRPF5DRPF4DRPF3DRPE2DRPE1DRPE0DRH'FF70PAPCRPA7CRPA6PCRPA6PCRPA6PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FF73PDPCRPD6PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2P	H'FF61	P2DR	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR	-	
HIFF65P60DRP67DRP66DRP66DRP65DRP64DRP63DRP62DRP61DRP60DRHIFF66P7DRP75DRP74DRP73DRP72DRP71DRP70DRHIFF67P8DR-P86DRP85DRP84DRP83DRP82DRP81DRP80DRHIFF68P9DRP97DRP96DRP95DRP94DRP93DRP92DRHIFF68PADRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRHIFF64PBDRPB7DRP86DRPB5DRPB4DRPB3DRPB2DRPB1DRPB0DRHIFF64PDRPC7DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRHIFF65PCDRPD7DRP66DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRHIFF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRHIFF66PGDRPG4DRPG3DRPG2DRPG1DRPG0DRHIFF67PAPCRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPG0DRHIFF71PBPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA3PCRPA1PCRPA0PCRHIFF73PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRHIFF74PEPCRPC7PCRPC6PCRPC5PCRPC4PCR </td <td>H'FF62</td> <td>P3DR</td> <td>_</td> <td>_</td> <td>P35DR</td> <td>P34DR</td> <td>P33DR</td> <td>P32DR</td> <td>P31DR</td> <td>P30DR</td> <td></td> <td></td>	H'FF62	P3DR	_	_	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR		
H'FF66P7DRP75DRP74DRP73DRP72DRP71DRP70DRH'FF67P8DR-P86DRP85DRP84DRP83DRP82DRP81DRP80DRH'FF68P9DRP97DRP96DRP95DRP94DRP93DRP92DRH'FF68PADRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRH'FF68PADRPA7DRPA6DRPA5DRPB4DRPB3DRPB2DRPB1DRPB0DRH'FF64PBDRPB7DRPB6DRPB5DRPB4DRPC3DRPD2DRPC1DRPC0DRH'FF65PCDRPC7DRPC6DRPC5DRPC4DRPC3DRPD2DRPD1DRPD0DRH'FF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF66PGDRPE7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF66PGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF67PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA3PCRPA1PCRPA0PCRH'FF71PBPCRPA7PCRPA6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FF73PDCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD3PCRPD3PCRPD4PCRPD3PCRH'FF74PEPCRPD7PCRPD6PCRPD5PCRPD4PCR <td>H'FF64</td> <td>P5DR</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>P53DR</td> <td>P52DR</td> <td>P51DR</td> <td>P50DR</td> <td>-</td> <td></td>	H'FF64	P5DR	_	_	_	_	P53DR	P52DR	P51DR	P50DR	-	
H'FF67P8DR—P86DRP85DRP84DRP83DRP82DRP81DRP80DRH'FF68P9DRP97DRP96DRP95DRP94DRP93DRP92DR——H'FF69PADRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRH'FF64PBDRPB7DRPB6DRPB5DRPB4DRPB3DRPB2DRPB1DRPB0DRH'FF64PCDRPC7DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRH'FF66PDRPD7DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRH'FF60PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF66PGDRPG3DRPG2DRPE1DRPE0DRH'FF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF66PGDRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA2PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRPD5PCRPC4PCRPC3PCRPD2PCRPD1PCRPO0PCRH'FF73PDCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FF74PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCR	H'FF65	P6DR	P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR		
H'FF68P9DRP97DRP96DRP95DRP94DRP93DRP92DR——H'FF69PADRPA7DRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRH'FF64PBDRPB7DRPB6DRPB5DRPB4DRPB3DRPB2DRPB1DRPB0DRH'FF66PCDRPC7DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRH'FF66PDDRPD7DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRH'FF66PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF6FPGDR	H'FF66	P7DR	_	_	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR	-	
H'FF69PADRPATDRPA6DRPA5DRPA4DRPA3DRPA2DRPA1DRPA0DRH'FF64PBDRPBTDRPB6DRPB5DRPB5DRPB4DRPB3DRPB2DRPB1DRPB0DRH'FF68PCDRPC7DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRH'FF66PDDRPD7DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRH'FF60PEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF66PFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF6FPGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPG1DRPG0DRH'FF71PBPCRPB7PCRPB6PCRPS5PCRPA4PCRPA3PCRPA2PCRPA1PCRPB0PCRH'FF73PDPCRPD7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FF74PEPCRPD7PCRPD6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCRH'FF74PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCR	H'FF67	P8DR	_	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR	-	
H'FF6APBDRPBTDRPB6DRPB6DRPB5DRPB4DRPB3DRPB2DRPB1DRPB0DRH'FF6BPCDRPC7DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRH'FF6CPDDRPD7DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRH'FF6DPEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF6EPFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF6FPGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPB0PCRH'FF73PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FF74PEPCRPE7PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCR	H'FF68	P9DR	P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	_	_	_	
H'FF6BPCDRPC7DRPC6DRPC6DRPC5DRPC4DRPC3DRPC2DRPC1DRPC0DRH'FF6CPDDRPD7DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRH'FF6DPEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF6EPFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF6FPGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA5PCRPA4PCRPA3PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FF73PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FF74PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCR	H'FF69	PADR	PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR	-	
H'FF6CPDDRPD7DRPD6DRPD6DRPD5DRPD4DRPD3DRPD2DRPD1DRPD0DRH'FF6DPEDRPE7DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF6EPFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF6FPGDR———PG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FF73PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FF74PEPCRPE7PCRPE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCR	H'FF6A	PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	_	
H'FF6DPEDRPE7DRPE6DRPE6DRPE5DRPE4DRPE3DRPE2DRPE1DRPE0DRH'FF6EPFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF6FPGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRP55PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FF72PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRP02PCRP00PCRH'FF73PDPCRPD7PCRPD6PCRPD5PCRP04PCRP03PCRP02PCRP01PCRP00PCRH'FF74PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE1PCRPE0PCR	H'FF6B	PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	_	
H'FF6EPFDRPF7DRPF6DRPF5DRPF4DRPF3DRPF2DRPF1DRPF0DRH'FF6FPGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCRPA6PCRPA5PCRPA4PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCRPB6PCRPB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FF72PCPCRPC7PCRPC6PCRPC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FF73PDPCRPD7PCRPD6PCRPD5PCRPD4PCRPE3PCRPD2PCRPD1PCRPD0PCRH'FF74PEPCRPE7PCRPE6PCRPE5PCRPE4PCRPE3PCRPE1PCRPE0PCR	H'FF6C	PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	_	
H'FF6FPGDRPG4DRPG3DRPG2DRPG1DRPG0DRH'FF70PAPCRPA7PCR PA6PCR PA5PCRPA4PCRPA3PCRPA2PCRPA1PCRPA0PCRH'FF71PBPCRPB7PCR PB6PCR PB5PCRPB4PCRPB3PCRPB2PCRPB1PCRPB0PCRH'FF72PCPCRPC7PCR PC6PCR PC5PCRPC4PCRPC3PCRPC2PCRPC1PCRPC0PCRH'FF73PDPCRPD7PCR PD6PCR PD5PCRPD4PCRPD3PCRPD2PCRPD1PCRPD0PCRH'FF74PEPCRPE7PCR PE6PCR PE5PCRPE4PCRPE3PCRPE2PCRPE1PCRPE0PCR	H'FF6D	PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	_	
H'FF70PAPCRPA7PCR PA6PCR PA6PCR PA5PCR PA4PCR PA3PCR PA2PCR PA1PCR PA0PCRH'FF71PBPCRPB7PCR PB6PCR PB5PCR PB4PCR PB3PCR PB2PCR PB1PCR PB0PCRH'FF72PCPCRPC7PCR PC6PCR PC5PCR PC4PCR PC3PCR PC2PCR PC1PCR PC0PCRH'FF73PDPCRPD7PCR PD6PCR PD5PCR PD4PCR PD3PCR PD2PCR PD1PCR PD0PCRH'FF74PEPCRPE7PCR PE6PCR PE5PCR PE4PCR PE3PCR PE2PCR PE1PCR PE0PCR	H'FF6E	PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	_	
H'FF71PBPCRPB7PCR PB6PCR PB5PCR PB5PCR PB4PCR PB3PCR PB2PCR PB1PCR PB0PCRH'FF72PCPCRPC7PCR PC6PCR PC5PCR PC4PCR PC3PCR PC2PCR PC1PCR PC0PCRH'FF73PDPCRPD7PCR PD6PCR PD5PCR PD4PCR PD3PCR PD2PCR PD1PCR PD0PCRH'FF74PEPCRPE7PCR PE6PCR PE5PCR PE4PCR PE3PCR PE2PCR PE1PCR PE0PCR	H'FF6F	PGDR	_	_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	_	
H'FF72PCPCRPC7PCR PC6PCR PC5PCR PC4PCR PC3PCR PC2PCR PC1PCR PC0PCRH'FF73PDPCRPD7PCR PD6PCR PD5PCR PD4PCR PD3PCR PD2PCR PD1PCR PD0PCRH'FF74PEPCRPE7PCR PE6PCR PE5PCR PE4PCR PE3PCR PE2PCR PE1PCR PE0PCR	H'FF70	PAPCR	PA7PCR	PA6PCR	PA5PCR	PA4PCR	PA3PCR	PA2PCR	PA1PCR	PA0PCR	_	
H'FF73PDPCRPD7PCR PD6PCR PD5PCR PD4PCR PD3PCR PD2PCR PD1PCR PD0PCRH'FF74PEPCRPE7PCR PE6PCR PE5PCR PE4PCR PE3PCR PE2PCR PE1PCR PE0PCR	H'FF71	PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR	_	
H'FF74 PEPCR PE7PCR PE6PCR PE5PCR PE4PCR PE3PCR PE2PCR PE1PCR PE0PCR	H'FF72	PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR	_	
	H'FF73	PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	_	
H'FF76 P30DR — P350DR P340DR P330DR P320DR P310DR P300DR	H'FF74	PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	-	
	H'FF76	P3ODR	_	_	P35ODR	P340DR	P33ODR	P32ODR	P310DR	P30ODR	-	
H'FF77 PAODR PA7ODR PA6ODR PA5ODR PA4ODR PA3ODR PA2ODR PA1ODR PA0ODR	H'FF77	PAODR	PA7ODR	PA6ODR	PA5ODR	PA4ODR	PA3ODR	PA2ODR	PA1ODR	PA0ODR		

	Register	-		-	-			-			Data Bus
Address		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Width
H'FF78	SMR0	C/Ā/ GM*³	CHR/ BLK* ⁴	PE	O/Ē	STOP/ BCP1*⁵	MP/ BCP0* ⁶	CKS1	CKS0	SCI0, smart card	8 bits
H'FF79	BRR0	OM	DEIX			DOIT	DOI U			interface 0	
		TIF		TE	DE		TELE		OKEO	_	
H'FF7A	SCR0	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF7B	TDR0									_	
H'FF7C	SSR0	TDRE	RDRF	ORER	FER/ ERS* ⁷	PER	TEND	MPB	MPBT		
H'FF7D	RDR0										
H'FF7E	SCMR0	_	_	_	_	SDIR	SINV	_	SMIF		
H'FF80	SMR1	C/Ā/ GM* ³	CHR/ BLK* ⁴	PE	O/Ē	STOP/ BCP1∗⁵	MP/ BCP0* ⁶	CKS1	CKS0	SCI1, smart card	8 bits
H'FF81	BRR1									interface 1	
H'FF82	SCR1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0		
H'FF83	TDR1									_	
H'FF84	SSR1	TDRE	RDRF	ORER	FER/ ERS* ⁷	PER	TEND	MPB	MPBT	_	
H'FF85	RDR1									_	
H'FF86	SCMR1	_	_	_	_	SDIR	SINV	_	SMIF	_	
H'FF88	SMR2	C/Ā/ GM* ³	CHR/ BLK* ⁴	PE	O/Ē	STOP/ BCP1*⁵	MP/ BCP0* ⁶	CKS1	CKS0	SCI2, smart card	8 bits
H'FF89	BRR2									interface 2	
H'FF8A	SCR2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	_	
H'FF8B	TDR2										
H'FF8C	SSR2	TDRE	RDRF	ORER	FER/ ERS* ⁷	PER	TEND	MPB	MPBT	_	
H'FF8D	RDR2										
H'FF8E	SCMR2	_	_	_	_	SDIR	SINV	_	SMIF		

Notes: 3. Functions as C/\overline{A} for SCI use, and as GM for smart card interface use.

4. Functions as CHR for SCI use, and as BLK for smart card interface use.

5. Functions as STOP for SCI use, and as BCP1 for smart card interface use.

6. Functions as MP for SCI use, and as BCP0 for smart card interface use.

7. Functions as FER for SCI use, and as ERS for smart card interface use.

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FE90	ADDRAH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	A/D converter	8 bits
H'FE91	ADDRAL	AD1	AD0	_	_	_		_	_	-	
H'FE92	ADDRBH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	-	
H'FE93	ADDRBL	AD1	AD0	_	_	_	_	_	_	-	
H'FE94	ADDRCH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	-	
H'FE95	ADDRCL	AD1	AD0	_		_		_	_	-	
H'FE96	ADDRDH	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	_	
H'FE97	ADDRDL	AD1	AD0	_	_	_		_		_	
H'FE98	ADCSR	ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0	_	
H'FE99	ADCR	TRGS1	TRGS0	_	_	CKS1	CH3	_	_		
H'FFA4	DADR0									D/A converter	8 bits
H'FFA5	DADR1									_	
H'FFA6	DACR01	DAOE1	DAOE0	DAE						_	
H'FFA8	DADR2									_	
H'FFA9	DADR3									_	
H'FFAA	DACR23	DAOE1	DAOE0	DAE		_	_	_	_		
H'FFAC	PFCR2	WAITPS	BREQOPS	SCS167E	CS25E	ASOD	_	_	_	Ports	8 bits
H'FFB0	TCR0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	8-bit timer	16 bits
H'FFB1	TCR1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	channel 0, 1	
H'FFB2	TCSR0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	_	
H'FFB3	TCSR1	CMFB	CMFA	OVF		OS3	OS2	OS1	OS0	_	
H'FFB4	TCORA0									_	
H'FFB5	TCORA1									_	
H'FFB6	TCORB0									_	
H'FFB7	TCORB1									_	
H'FFB8	TCNT0									_	
H'FFB9	TCNT1										
H'FFBC (Read)	TCSR	OVF	WT/IT	TME	_	_	CKS2	CKS1	CKS0	WDT	16 bits
H'FFBD (Read)	TCNT									_	
H'FFBF (Read)	RSTCSR	WOVF	RSTE	_	_	_	_	_	_		

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FFC0	TSTR	_	_	CST5	CST4	CST3	CST2	CST1	CST0	TPU	16 bits
H'FFC1	TSYR	_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	_	
H'FFC8	FLMCR1*1	FWE	SWE	ESU	PSU	EV	PV	E	Р	Flash memory	8 bits
H'FFC9	FLMCR2*1	FLER	_	_	_	_	_	_	_		
H'FFCA	EBR1*1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	_	
H'FFCB	EBR2*1	_	_	EB13*2	EB12*2	EB11	EB10	EB9	EB8		
H'FFD0	TCR0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU0	16 bits
H'FFD1	TMDR0	_	_	BFB	BFA	MD3	MD2	MD1	MD0	_	
H'FFD2	TIOR0H	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FFD3	TIOR0L	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_	
H'FFD4	TIER0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	_	
H'FFD5	TSR0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA		
H'FFD6	TCNT0									_	
H'FFD7	-									_	
H'FFD8	TGR0A										
H'FFD9	_										
H'FFDA	TGR0B										
H'FFDB										_	
H'FFDC	TGR0C									_	
H'FFDD										_	
H'FFDE	TGR0D										
H'FFDF	=									_	

Notes: 1. Valid only in F-ZTAT version

2. Valid only in H8S/2339 F-ZTAT version

Address	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	Data Bus Width
H'FFE0	TCR1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU1	16 bits
H'FFE1	TMDR1	_	_	_	_	MD3	MD2	MD1	MD0	_	
H'FFE2	TIOR1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_	
H'FFE4	TIER1	TTGE	_	TCIEU	TCIEV	_	—	TGIEB	TGIEA		
H'FFE5	TSR1	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA	_	
H'FFE6	TCNT1										
H'FFE7											
H'FFE8	TGR1A										
H'FFE9	_										
H'FFEA	TGR1B									_	
H'FFEB	-									_	
H'FFF0	TCR2	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU2	16 bits
H'FFF1	TMDR2	_	_	_	_	MD3	MD2	MD1	MD0		
H'FFF2	TIOR2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0		
H'FFF4	TIER2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA		
H'FFF5	TSR2	TCFD	_	TCFU	TCFV	_	—	TGFB	TGFA		
H'FFF6	TCNT2									_	
H'FFF7											
H'FFF8	TGR2A									_	
H'FFF9	-									_	
H'FFFA	TGR2B									_	
H'FFFB	-									_	

8.2 List of Registers (By Module)

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Interrupt	System control register	SYSCR	R/W	H'01	H'FF39
controller	IRQ sense control register H	ISCRH	R/W	H'00	H'FF2C
	IRQ sense control register L	ISCRL	R/W	H'00	H'FF2D
	IRQ enable register	IER	R/W	H'00	H'FF2E
	IRQ status register	ISR	R/(W)*2	H'00	H'FF2F
	Interrupt priority register A	IPRA	R/W	H'77	H'FEC4
	Interrupt priority register B	IPRB	R/W	H'77	H'FEC5
	Interrupt priority register C	IPRC	R/W	H'77	H'FEC6
	Interrupt priority register D	IPRD	R/W	H'77	H'FEC7
	Interrupt priority register E	IPRE	R/W	H'77	H'FEC8
	Interrupt priority register F	IPRF	R/W	H'77	H'FEC9
	Interrupt priority register G	IPRG	R/W	H'77	H'FECA
	Interrupt priority register H	IPRH	R/W	H'77	H'FECB
	Interrupt priority register I	IPRI	R/W	H'77	H'FECC
	Interrupt priority register J	IPRJ	R/W	H'77	H'FECD
	Interrupt priority register K	IPRK	R/W	H'77	H'FECE
Bus	Bus width control register	ABWCR	R/W	H'FF/H'00*5	H'FED0
controller	Access state control register	ASTCR	R/W	H'FF	H'FED1
	Wait control register H	WCRH	R/W	H'FF	H'FED2
	Wait control register L	WCRL	R/W	H'FF	H'FED3
	Bus control register H	BCRH	R/W	H'D0	H'FED4
	Bus control register L	BCRL	R/W	H'3C	H'FED5
	Memory control register	MCR	R/W	H'00	H'FED6
	DRAM control register	DRAMCR	R/W	H'00	H'FED7
	Refresh timer counter	RTCNT	R/W	H'00	H'FED8
	Refresh time constant register	RTCOR	R/W	H'FF	H'FED9

Module	Register	Abbreviation	R/W	Initial Value	Address*1
DTC	DTC mode register A	MRA	* ³	Undefined	* ⁴
	DTC mode register B	MRB	* ³	Undefined	* ⁴
	DTC source address register	SAR	<u>*</u> *3	Undefined	<u>*</u> ⁴
	DTC destination address register	DAR	* ³	Undefined	<u>*</u> *
	DTC transfer count register A	CRA	* ³	Undefined	* ⁴
	DTC transfer count register B	CRB	* ³	Undefined	<u>*</u> ⁴
	DTC enable register	DTCER	R/W	H'00	H'FF30 to H'FF35
	DTC vector register	DTVECR	R/W	H'00	H'FF37
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
TPU0	Timer control register 0	TCR0	R/W	H'00	H'FFD0
	Timer mode register 0	TMDR0	R/W	H'C0	H'FFD1
	Timer I/O control register 0H	TIOR0H	R/W	H'00	H'FFD2
	Timer I/O control register 0L	TIOR0L	R/W	H'00	H'FFD3
	Timer interrupt enable register 0	TIER0	R/W	H'40	H'FFD4
	Timer status register 0	TSR0	R/(W)*2	H'C0	H'FFD5
	Timer counter 0	TCNT0	R/W	H'0000	H'FFD6
	Timer general register 0A	TGR0A	R/W	H'FFFF	H'FFD8
	Timer general register 0B	TGR0B	R/W	H'FFFF	H'FFDA
	Timer general register 0C	TGR0C	R/W	H'FFFF	H'FFDC
	Timer general register 0D	TGR0D	R/W	H'FFFF	H'FFDE
TPU1	Timer control register 1	TCR1	R/W	H'00	H'FFE0
	Timer mode register 1	TMDR1	R/W	H'C0	H'FFE1
	Timer I/O control register 1	TIOR1	R/W	H'00	H'FFE2
	Timer interrupt enable register 1	TIER1	R/W	H'40	H'FFE4
	Timer status register 1	TSR1	R/(W)*2	H'C0	H'FFE5
	Timer counter 1	TCNT1	R/W	H'0000	H'FFE6
	Timer general register 1A	TGR1A	R/W	H'FFFF	H'FFE8
	Timer general register 1B	TGR1B	R/W	H'FFFF	H'FFEA

Module	Register	Abbreviation	R/W	Initial Value	Address*1
TPU2	Timer control register 2	TCR2	R/W	H'00	H'FFF0
	Timer mode register 2	TMDR2	R/W	H'C0	H'FFF1
	Timer I/O control register 2	TIOR2	R/W	H'00	H'FFF2
	Timer interrupt enable register 2	TIER2	R/W	H'40	H'FFF4
	Timer status register 2	TSR2	R/(W)*2	H'C0	H'FFF5
	Timer counter 2	TCNT2	R/W	H'0000	H'FFF6
	Timer general register 2A	TGR2A	R/W	H'FFFF	H'FFF8
	Timer general register 2B	TGR2B	R/W	H'FFFF	H'FFFA
TPU3	Timer control register 3	TCR3	R/W	H'00	H'FE80
	Timer mode register 3	TMDR3	R/W	H'C0	H'FE81
	Timer I/O control register 3H	TIOR3H	R/W	H'00	H'FE82
	Timer I/O control register 3L	TIOR3L	R/W	H'00	H'FE83
	Timer interrupt enable register 3	TIER3	R/W	H'40	H'FE84
	Timer status register 3	TSR3	R/(W)* ²	H'C0	H'FE85
	Timer counter 3	TCNT3	R/W	H'0000	H'FE86
	Timer general register 3A	TGR3A	R/W	H'FFFF	H'FE88
	Timer general register 3B	TGR3B	R/W	H'FFFF	H'FE8A
	Timer general register 3C	TGR3C	R/W	H'FFFF	H'FE8C
	Timer general register 3D	TGR3D	R/W	H'FFFF	H'FE8E
TPU4	Timer control register 4	TCR4	R/W	H'00	H'FE90
	Timer mode register 4	TMDR4	R/W	H'C0	H'FE91
	Timer I/O control register 4	TIOR4	R/W	H'00	H'FE92
	Timer interrupt enable register 4	TIER4	R/W	H'40	H'FE94
	Timer status register 4	TSR4	R/(W)*2	H'C0	H'FE95
	Timer counter 4	TCNT4	R/W	H'0000	H'FE96
	Timer general register 4A	TGR4A	R/W	H'FFFF	H'FE98
	Timer general register 4B	TGR4B	R/W	H'FFFF	H'FE9A

Module	Register	Abbreviation	R/W	Initial Value	Address*1
TPU5	Timer control register 5	TCR5	R/W	H'00	H'FEA0
	Timer mode register 5	TMDR5	R/W	H'C0	H'FEA1
	Timer I/O control register 5	TIOR5	R/W	H'00	H'FEA2
	Timer interrupt enable register 5	TIER5	R/W	H'40	H'FEA4
	Timer status register 5	TSR5	R/(W)*2	H'C0	H'FEA5
	Timer counter 5	TCNT5	R/W	H'0000	H'FEA6
	Timer general register 5A	TGR5A	R/W	H'FFFF	H'FEA8
	Timer general register 5B	TGR5B	R/W	H'FFFF	H'FEAA
ALL TPU	Timer start register	TSTR	R/W	H'00	H'FFC0
channels	Timer syncro register	TSYR	R/W	H'00	H'FFC1
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
PPG	PPG output control register	PCR	R/W	H'FF	H'FF46
	PPG output mode register	PMR	R/W	H'F0	H'FF47
	Next data enable register H	NDERH	R/W	H'00	H'FF48
	Next data enable register L	NDERL	R/W	H'00	H'FF49
	Output data register H	PODRH	R/(W)*6	H'00	H'FF4A
	Output data register L	PODRL	R/(W)* ⁶	H'00	H'FF4B
	Next data register H	NDRH	R/W	H'00	H'FF4C*7
					H'FF4E
	Next data register L	NDRL	R/W	H'00	H'FF4D* ⁷
					H'FF4F
	Port 1 data direction register	P1DDR	W	H'00	H'FEB0
	Port 2 data direction register	P2DDR	W	H'00	H'FEB1
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
8-bit	Timer control register 0	TCR0	R/W	H'00	H'FFB0
timer 0	Timer control/status register 0	TCSR0	R/(W)*8	H'00	H'FFB2
	Timer constant register A0	TCORA0	R/W	H'FF	H'FFB4
	Timer constant register B0	TCORB0	R/W	H'FF	H'FFB6
	Timer counter 0	TCNT0	R/W	H'00	H'FFB8
8-bit	Timer control register 1	TCR1	R/W	H'00	H'FFB1
timer 1	Timer control/status register 1	TCSR1	R/(W)* ⁸	H'10	H'FFB3
	Timer constant register A1	TCORA1	R/W	H'FF	H'FFB5
	Timer constant register B1	TCORB1	R/W	H'FF	H'FFB7
	Timer counter 1	TCNT1	R/W	H'00	H'FFB9

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Both 8-bit timer channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
WDT	Timer control/status register	TCSR	R/(W)* ¹⁰	H'18	H'FFBC: Write ^{*9}
					H'FFBC: Read
	Timer counter	TCNT	R/W	H'00	H'FFBC: Write* ⁶
					H'FFBD: Read
	Reset control/status register	RSTCSR	R/(W)* ¹⁰	H'1F	H'FFBE: Write ^{*9}
					H'FFBF: Read
SCI0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)* ²	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
SCI1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)* ²	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
SCI2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'F2	H'FF8E

Module	Register	Abbreviation	R/W	Initial Value	Address*1
All SCI channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
SMCI0	Serial mode register 0	SMR0	R/W	H'00	H'FF78
	Bit rate register 0	BRR0	R/W	H'FF	H'FF79
	Serial control register 0	SCR0	R/W	H'00	H'FF7A
	Transmit data register 0	TDR0	R/W	H'FF	H'FF7B
	Serial status register 0	SSR0	R/(W)*2	H'84	H'FF7C
	Receive data register 0	RDR0	R	H'00	H'FF7D
	Smart card mode register 0	SCMR0	R/W	H'F2	H'FF7E
SMCI1	Serial mode register 1	SMR1	R/W	H'00	H'FF80
	Bit rate register 1	BRR1	R/W	H'FF	H'FF81
	Serial control register 1	SCR1	R/W	H'00	H'FF82
	Transmit data register 1	TDR1	R/W	H'FF	H'FF83
	Serial status register 1	SSR1	R/(W)*2	H'84	H'FF84
	Receive data register 1	RDR1	R	H'00	H'FF85
	Smart card mode register 1	SCMR1	R/W	H'F2	H'FF86
SMCI2	Serial mode register 2	SMR2	R/W	H'00	H'FF88
	Bit rate register 2	BRR2	R/W	H'FF	H'FF89
	Serial control register 2	SCR2	R/W	H'00	H'FF8A
	Transmit data register 2	TDR2	R/W	H'FF	H'FF8B
	Serial status register 2	SSR2	R/(W)*2	H'84	H'FF8C
	Receive data register 2	RDR2	R	H'00	H'FF8D
	Smart card mode register 2	SCMR2	R/W	H'00	H'FF8E
All SCI channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
ADC	A/D data register AH	ADDRAH	R	H'00	H'FF90
	A/D data register AL	ADDRAL	R	H'00	H'FF91
	A/D data register BH	ADDRBH	R	H'00	H'FF92
	A/D data register BL	ADDRBL	R	H'00	H'FF93
	A/D data register CH	ADDRCH	R	H'00	H'FF94
	A/D data register CL	ADDRCL	R	H'00	H'FF95
	A/D data register DH	ADDRDH	R	H'00	H'FF96

Module	Register	Abbreviation	R/W	Initial Value	Address*1
ADC	A/D data register DL	ADDRDL	R	H'00	H'FF97
	A/D control/status register	ADCSR	R/(W)*10	H'00	H'FF98
	A/D control register	ADCR	R/W	H'3F	H'FF99
	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
DAC0, 1	D/A data register 0	DADR0	R/W	H'00	H'FFA4
	D/A data register 1	DADR1	R/W	H'00	H'FFA5
	D/A control register 01	DACR01	R/W	H'1F	H'FFA6
DAC2, 3	D/A data register 2	DADR2	R/W	H'00	H'FDA8
	D/A data register 3	DADR3	R/W	H'00	H'FDA9
	D/A control register 23	DACR23	R/W	H'1F	H'FDAA
All DAC channels	Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C
On-chip RAM	/System control register	SYSCR	R/W	H'01	H'FF39
Flash memory	Flash memory control register 1	FLMCR1* ¹⁵	R/W* ¹²	H'00* ¹³	H'FFC8* ¹¹
	Flash memory control register 2	FLMCR2*15	R/W*12	H'00* ¹⁴	H'FFC9*11
	Erase block register 1	EBR1* ¹⁵	R/W*12	H'00* ¹⁴	H'FFCA*11
	Erase block register 2	EBR2* ¹⁵	R/W*12	H'00* ¹⁴	H'FFCB*11
	RAM emulation register	RAMER	R/W	H'00	H'FEDB
	System control register 2	SYSCR2* ¹⁶	R/W	H'00	H'FF42
Clock pulse generator	System clock control register	SCKCR	R/W	H'00	H'FF3A
Power-down	Standby control register	SBYCR	R/W	H'08	H'FF38
mode	System clock control register	SCKCR	R/W	H'00	H'FF3A
	Module stop control register H	MSTPCRH	R/W	H'3F	H'FF3C
	Module stop control register L	MSTPCRL	R/W	H'FF	H'FF3D
Port 1	Port 1 data direction register	P1DDR	W	H'00	H'FEB0
	Port 1 data register	P1DR	R/W	H'00	H'FF60
	Port 1 register	PORT1	R	С	H'FF50
Port 2	Port 2 data direction register	P2DDR	W	H'00	H'FEB1
	Port 2 data register	P2DR	R/W	H'00	H'FF61
	Port 2 register	PORT2	R	Undefined	H'FF51

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Port 3	Port 3 data direction register	P3DDR	W	H'00	H'FEB2
	Port 3 data register	P3DR	R/W	H'00	H'FF62
	Port 3 register	PORT3	R	Undefined	H'FF52
	Port 3 open drain control register	P3ODR	R/W	H'00	H'FF76
Port 4	Port 4 register	PORT4	R	Undefined	H'FF53
Port 5	Port 5 data direction register	P5DDR	W	H'0* ²¹	H'FEB4
	Port 5 data register	P5DR	R/W	H'0* ²¹	H'FF64
	Port 5 register	PORT5	R	Undefined	H'FF54
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
	System control register	SYSCR	R/W	H'01	H'FF39
Port 6	Port 6 data direction register	P6DDR	W	H'00	H'FEB5
	Port 6 data register	P6DR	R/W	H'00	H'FF65
	Port 6 register	PORT6	R	Undefined	H'FF55
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
Port 7	Port 7 data direction register	P7DDR	W	H'00	H'FEB6
	Port 7 data register	P7DR	R/W	H'00	H'FF66
	Port 7 register	PORT7	R	Undefined	H'FF56
Port 8	Port 8 data direction register	P8DDR	W	H'00* ¹⁷	H'FEB7
	Port 8 data register	P8DR	R/W	H'00* ¹⁷	H'FF67
	Port 8 register	PORT8	R	Undefined*17	H'FF57
	Port function control register 2	PFCR2	R/W	H'30* ¹⁷	H'FFAC
Port 9	Port 9 data direction register	P9DDR	W	H'00* ¹⁸	H'FEB8
	Port 9 data register	P9DR	R/W	H'00* ¹⁸	H'FF68
	Port 9 register	PORT9	R	Undefined	H'FF58
	System control register	SYSCR	R/W	H'01	H'FF39
Port A	Port A data direction register	PADDR	W	H'00	H'FEB9
	Port A data register	PADR	R/W	H'00	H'FF69
	Port A register	PORTA	R	Undefined	H'FF59
	Port A MOS pull-up control register	PAPCR	R/W	H'00	H'FF70
	Port A open drain control register	PAODR	R/W	H'00	H'FF77
	Port function control register 1	PFCR1	R/W	H'0F	H'FF45

Module	Register	Abbreviation	R/W	Initial Value	Address*1
Port B	Port B data direction register	PBDDR	W	H'00	H'FEBA
	Port B data register	PBDR	R/W	H'00	H'FF6A
	Port B register	PORTB	R	Undefined	H'FF5A
	Port B MOS pull-up control register	PBPCR	R/W	H'00	H'FF71
Port C	Port C data direction register	PCDDR	W	H'00	H'FEBB
	Port C data register	PCDR	R/W	H'00	H'FF6B
	Port C register	PORTC	R	Undefined	H'FF5B
	Port C MOS pull-up control register	PCPCR	R/W	H'00	H'FF72
Port D	Port D data direction register	PDDDR	W	H'00	H'FEBC
	Port D data register	PDDR	R/W	H'00	H'FF6C
	Port D register	PORTD	R	Undefined	H'FF5C
	Port D MOS pull-up control register	PDPCR	R/W	H'00	H'FF73
Port E	Port E data direction register	PEDDR	W	H'00	H'FEBD
	Port E data register	PEDR	R/W	H'00	H'FF6D
	Port E register	PORTE	R	Undefined	H'FF5D
	Port E MOS pull-up control register	PEPCR	R/W	H'00	H'FF74
Port F	Port F data direction register	PFDDR	W	H'80/H'00* ¹⁹	H'FEBE
	Port F data register	PFDR	R/W	H'00	H'FF6E
	Port F register	PORTF	R	Undefined	H'FF5E
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
	System control register	SYSCR	R/W	H'01	H'FF39
Port G	Port G data direction register	PGDDR	W	H'10/H'00 * ¹⁹ * ²⁰	H'FEBF
	Port G data register	PGDR	R/W	H'00* ²⁰	H'FF6F
	Port G register	PORTG	R	Undefined*20	H'FF5F
	Port function control register 2	PFCR2	R/W	H'30	H'FFAC
Notes: 1		PFCR2	K/VV	H'30	HFFAC

Notes: 1. Lower 16 bits of the address.

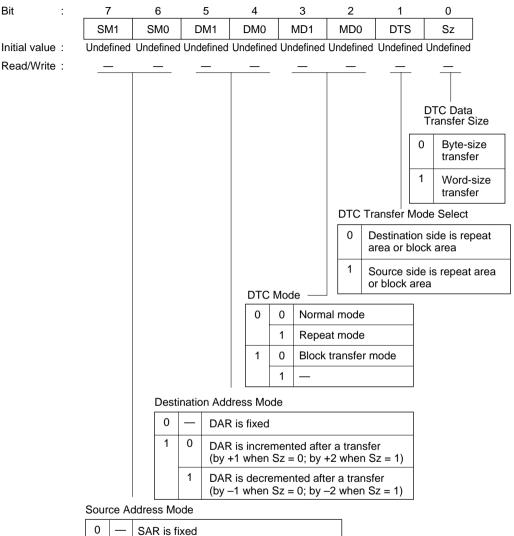
2. Only 0 can be written for flag clearing.

3. Registers in the DTC cannot be read or written to directly.

 Located as register information in on-chip RAM addresses H'EBC0 to H'EFBF. Cannot be located in external memory space. Do not clear the RAME bit in SYSCR to 0 when using the DTC.

5. Determined by the MCU operating mode.

6. Bits used for pulse output cannot be written to.

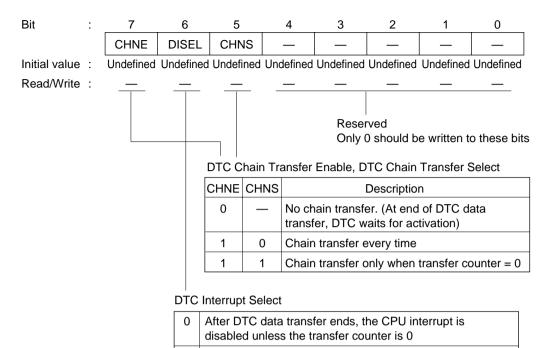

- 7. If the pulse output group 2 and pulse output group 3 output triggers are the same according to the PCR setting, the NDRH address will be H'FF4C, and if different, the address of NDRH for group 2 will be H'FF4E, and that for group 3 will be H'FF4C. Similarly, if the pulse output group 0 and pulse output group 1 output triggers are the same according to the PCR setting, the NDRL address will be H'FF4D, and if different, the address of NDRL for group 0 will be H'FF4F, and that for group 1 will be H'FF4D.
- 8. Only 0 can be written to bits 7 to 5, to clear the flags.
- 9. For information on writing, see section 10.2.4, Notes on Register Access, in the Hardware Manual.
- 10. Only 0 can be written to bit 7, to clear the flag.
- 11. Flash memory registers selection is performed by means of the FLSHE bit in system control register 2 (SYSCR2).
- 12. In modes in which the on-chip flash memory is disabled, a read will return H'00, and writes are invalid. Writes are also disabled when the FWE bit in FLMCR1 is cleared to 0.
- 13. When a high level is input to the FWE pin, the initial value is H'80.
- 14. When a low level is input to the FWE pin, or if a high level is input but the SWE bit in FLMCR1 is not set, these registers are initialized to H'00.
- 15. FLMCR1, FLMCR2, EBR1, and EBR2 are 8-bit registers. Only byte access can be used on these registers, with the access requiring two states.
- 16. The SYSCR2 register can only be used in the F-ZTAT version. In the mask ROM version this register will return an undefined value if read, and cannot be written to.
- 17. Value of bits 6 to 0.
- 18. Value of bits 7 to 2.
- 19. The initial value depends on the mode.
- 20. Value of bits 4 to 0.
- 21 Value of bits 3 to 0.

8.3 Functions

MRA-DTC Mode Register A

H'F800-H'FBFF

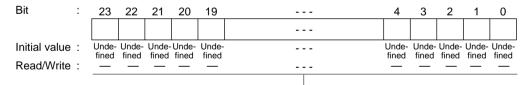
DTC



0	—	SAR is fixed
1	0	SAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
	1	SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)

MRB—DTC Mode Register B

H'F800-H'FBFF


SAR—DTC Source Address Register

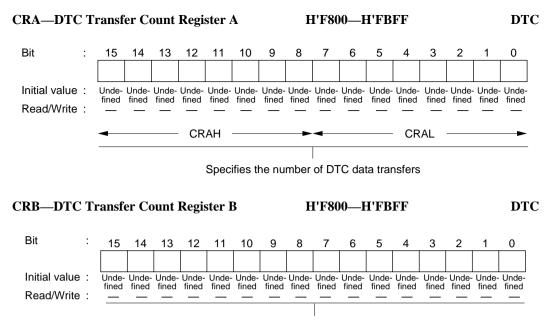
1

H'F800—H'FBFF

After DTC data transfer ends, the CPU interrupt is enabled

DTC

Specifies DTC transfer data source address

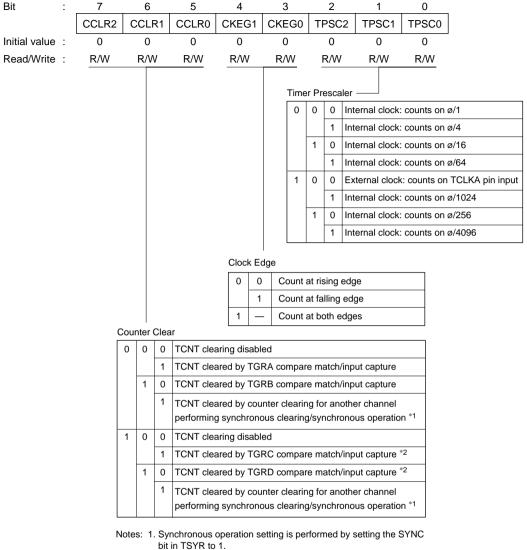

DAR—DTC Destination Address Register

H'F800—H'FBFF

DTC

Bit	:	23	22	21	20	19	 4	3	2	1	0
Initial value	:				Unde- fined		 Unde- fined			Unde- fined	Unde- fined
Read/Write	:	_	—	—	—	—	 —	—	—	—	_

Specifies DTC transfer data destination address

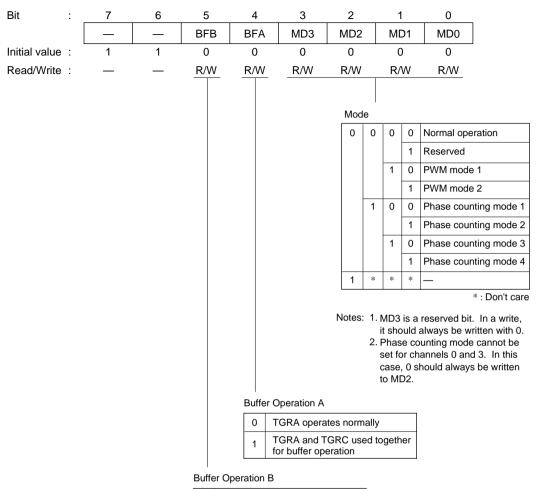


Specifies the number of DTC block data transfers

TCR3—Timer Control Register 3

H'FE80

TPU3



When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority, and compare match/input capture does not occur.

TMDR3—Timer Mode Register 3

H'FE81

TPU3

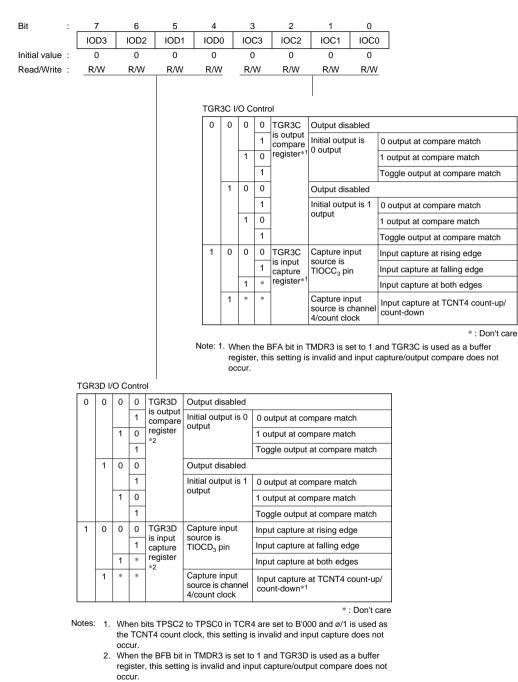
0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

TIOR3H—Timer I/O Control Register 3H

H'FE82

Bit :		7		6	5	4	Ļ	;	3		2	1	0	
Initial value :	10	B3	1	OB2	IOB1	IO	30	10	A3	1	OA2	IOA1	IOA0	
		0		0	0	C)	(0		0	0	0	
Read/Write :	R	/W		R/W	R/W	R/	W	R	W		R/W	R/W	R/W	
							TGR	24 1		ontr				
							0		00			0.1	Product 1	
							0		0	0	TGR3A is output		disabled	
										1	compare		output is	0 output at compare match
									1	0	register	register		1 output at compare match
										1				Toggle output at compare match
								1	0	0		Output	disabled	
										1]	Initial output is 1 output		0 output at compare match
									1	0	1			1 output at compare match
										1]			Toggle output at compare match
							1	0	0	0	TGR3A		e input	Input capture at rising edge
										1	is input capture			Input capture at falling edge
									1	*	register			Input capture at both edges
								1	*	*	Capture input source is channel 4/count clock		is channel	Input capture at TCNT4 count-up/ count-down
												4/0001	IT CIOCK	* : Don't care
														Dontoalo
	TGR	3B I/	0 Co	ontro										
	0	0	0	0	TGR3B	Output	disab	bled						
				1	is output compare	Initial o		is	0 0	outp	ut at com	oare ma	tch	
			4	0	register	0 outpu	t							4

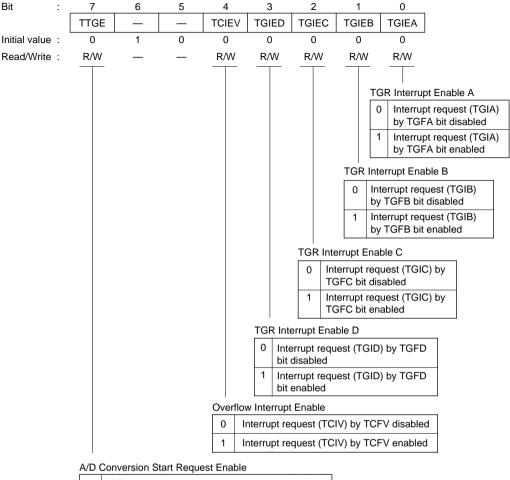
			1	compare	Initial output is	0 output at compare match
		1	0	register	0 output	1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR3B	Capture input	Input capture at rising edge
			1	is input capture	source is TIOCB ₃ pin	Input capture at falling edge
		1	*	register		Input capture at both edges
	1	*	*		Capture input source is channel 4/count clock	Input capture at TCNT4 count-up/ count-down*1


* : Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR4 are set to B'000, and ø/1 is used as the TCNT4 count clock, this setting is invalid and input capture does not occur.

TPU3

TIOR3L—Timer I/O Control Register 3L


H'FE83

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

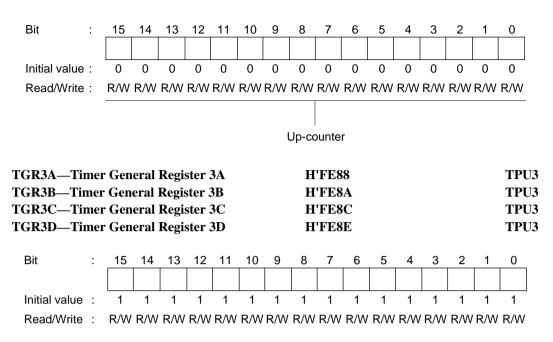
TIER3—Timer Interrupt Enable Register 3

H'FE84

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR3—Timer Status Register 3

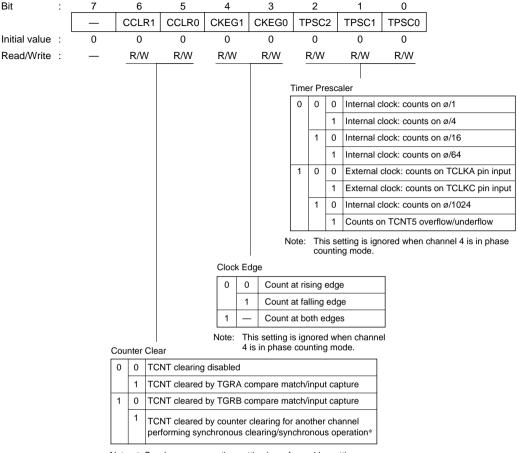
H'FE85


Overflow Flag

0	[Clearing condition] When 0 is written to TCFV after reading TCFV = 1
1	[Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000)

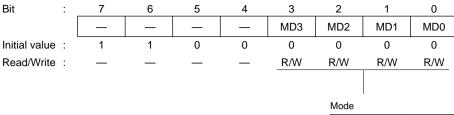
Note: * Can only be written with 0 for flag clearing.

TCNT3—Timer Counter 3


H'FE86

TCR4—Timer Control Register 4

H'FE90



Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR4—Timer Mode Register 4

H'FE91

TPU4

Mode	Э			
0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	—

* : Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

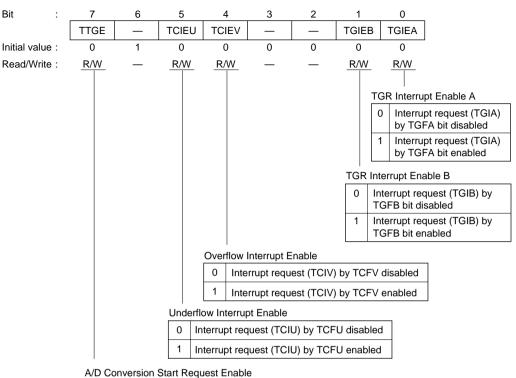
TIOR4—Timer I/O Control Register 4

H'FE92

TPU4

Bit :	7	6	5	4		3		2	1	0	
	IOB3	IOB2	IOB1	IOB0	10	DA3		IOA2	IOA1	IOA0	
Initial value:	0	0	0	0		0		0	0	0	
Read/Write :	R/W	R/W	R/W	R/W	_F	R/W		R/W	R/W	R/W	
				-			~				
					GR44	4 I/O	Co	ntrol			
				0	0	0	0	TGR4A	Output	disabled	
							1	is output compare	Initial or output	utput is 0	0 output at compare match
						1	0	register	Jouipui		1 output at compare match
							1	1			Toggle output at compare match
					1	0	0		Output	disabled	
							1			utput is 1	0 output at compare match
						1	0		output		1 output at compare match
							1				Toggle output at compare match
				1	0	0	0	TGR4A	Capture		Input capture at rising edge
							1	is input capture	source TIOCA		Input capture at falling edge
						1	*	register			Input capture at both edges
					1	*	*			is TGR3A e match/	Input capture at generation of TGR3A compare match/input capture

* : Don't care

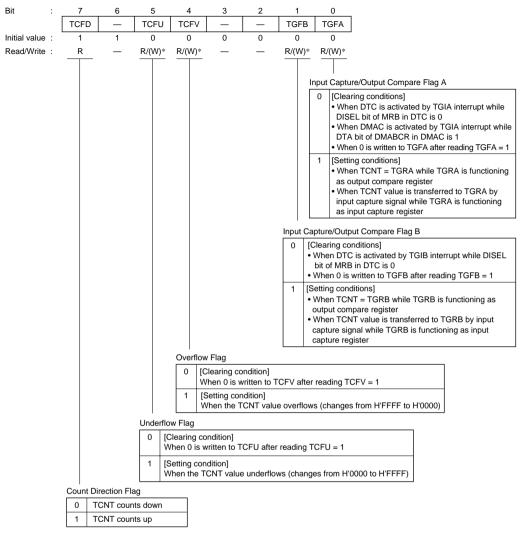

TGR4B I/O Control

0	0	0	0	TGR4B	Output disabled				
			1	is output compare	Initial output is 0	0 output at compare match			
		1	0	register	output	1 output at compare match			
			1			Toggle output at compare match			
	1	0	0		Output disabled				
			1		Initial output is 1	0 output at compare match			
		1	0		output	1 output at compare match			
			1			Toggle output at compare match			
1	0	0	0	TGR4B	Capture input	Input capture at rising edge			
			1	is input capture	source is TIOCB ₄ pin	Input capture at falling edge			
		1	*	register		Input capture at both edges			
	1	*	*		Capture input source is TGR3C compare match/ input capture	Input capture at generation of TGR3C compare match/input capture			

* : Don't care

TIER4—Timer Interrupt Enable Register 4

H'FE94

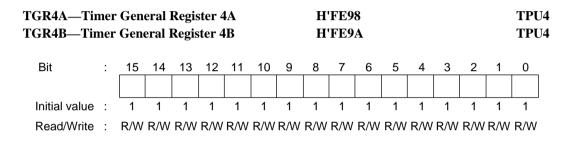

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

HITACHI

TPU4

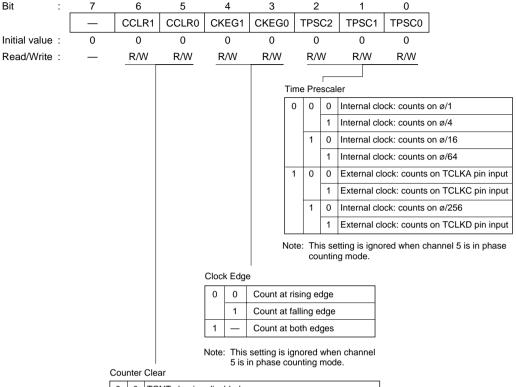
TSR4—Timer Status Register 4


H'FE95


TCNT4—Timer Counter 4

H'FE96

Up/down-counter*


Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TCR5—Timer Control Register 5

H'FEA0

0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

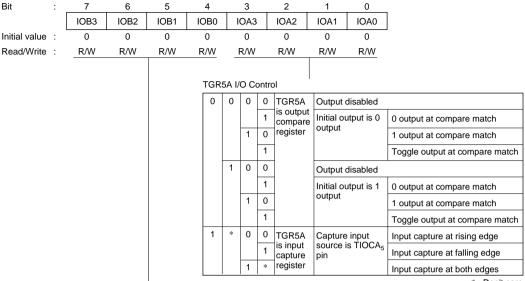
TMDR5—Timer Mode Register 5

H'FEA1

TPU5

Bit :	7	6	5	4	3	2	1	0
	—	—	—	—	MD3	MD2	MD1	MD0
Initial value :	1	1	0	0	0	0	0	0
Read/Write :	_	—	—	—	R/W	R/W	R/W	R/W

Мос	le			
0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	_


* : Don't care

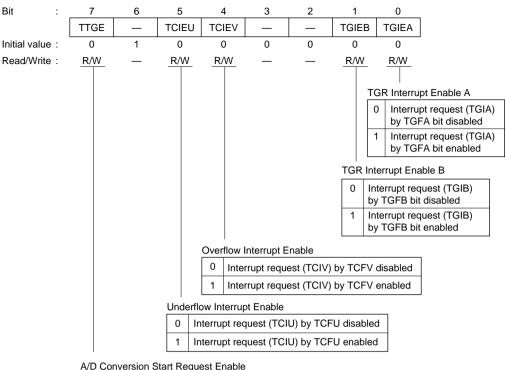
Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR5—Timer I/O Control Register 5

H'FEA2

TPU5

* : Don't care

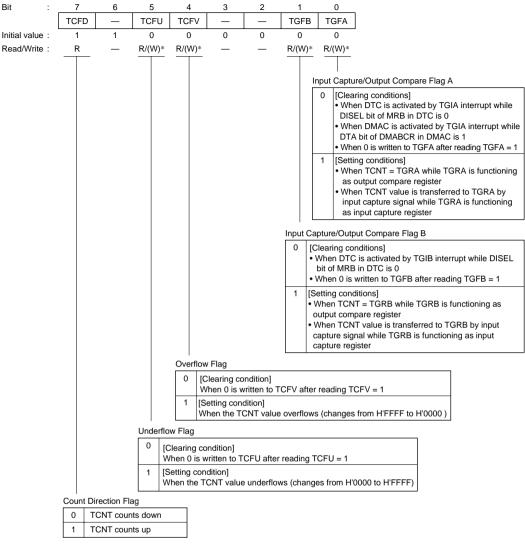

TGR5B I/O Control

0	0	0	0	TGR5B	Output disabled	
			1	is output compare	' Initial output is ()	0 output at compare match
		1	0	register		1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1	0 output at compare match
		1	0		output	1 output at compare match
			1			Toggle output at compare match
1	*	0	0	TGR5B	Capture input	Input capture at rising edge
			1	is input capture	source is TIOCB ₅ pin	Input capture at falling edge
		1	*	register		Input capture at both edges

* : Don't care

TIER5—Timer Interrupt Enable Register 5

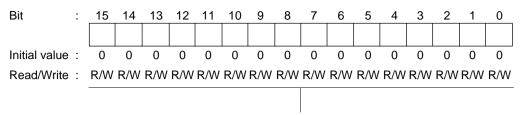
H'FEA4


0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

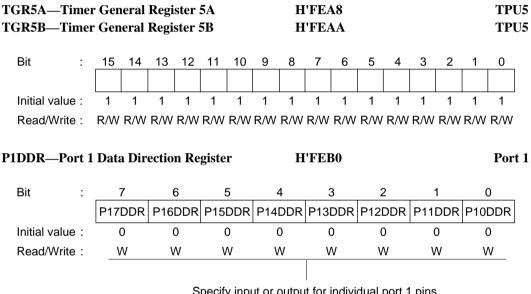
HITACHI

TPU5

TSR5—Timer Status Register 5


H'FEA5

Note: * Can only be written with 0 for flag clearing.


TCNT5—Timer Counter 5

H'FEA6

Up/down-counter*

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

Specify input or output for individual port 1 pins

P2DDR—Port 2 Data Direction Register

Bit :	7	6	5	4	3	2	1	0	_			
	—		P35DDR	P34DDR	P33DDF	P32DDI	R P31D	DR P30DDF				
Initial value :	Undefined	Undefined	0	0	0	0	0	0	_			
Read/Write :	_	_	W	W	W	W	W	W				
Specify input or output for individual port 3 pins P5DDR—Port 5 Data Direction Register H'FEB4 Port												
P5DDR—Port	5 Data Di	rection Ro			or output I'FEB4	 t for indivi	dual port		rt 5			
P5DDR—Port Bit :	5 Data Di 7	rection Ro				 t for indivi 2	dual port		rt 5			
			egister	E	I'FEB4	2	1	Po	rt 5			

P3DDR—Port 3 Data Direction Register

Read/Write :

394

Bit	:	7	6	5	4	3	2	1	0
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
Initial valu	ie :	0	0	0	0	0	0	0	0
Read/Writ	te:	W	W	W	W	W	W	W	W

Specify input or output for individual port 2 pins

W

Specify input or output for individual port 5 pins

W

W

W

H'FEB1

H'FEB2

R

Port 2

Port 3

P6DDR—Port 6 Data Direction Register

P7DDR—Por	t 7 Data Dii	ection Re	gister	Н	FEB6			Port	ť
Bit :	7	6	5	4	3	2	1	0	
	—	—	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR	
Initial value :	Undefined	Undefined	0 b	0	0	0	0	0	
Read/Write :	—	—	W	W	W	W	W	W	
			Sp	becify inpu	t or output	for individ	lual port 7	pins	

P8DDR—Port 8A Data Direction Register H'FEB7

Bit	:	7	6	5	4	3	2	1	0
		—	P86DDR	P85DDR	P84DDR	P83DDR	P82DDR	P81DDR	P80DDR
Initial value	э:	Undefined	0	0	0	0	0	0	0
Read/Write	э:	_	W	W	W	W	W	W	W

Specify input or output for individual port 8 pins

Bit	:	7	6	5	4	3	2	1	0
		P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port 6 pins

Port 8

395

7

P9DDR—Port 9A Data Direction Register

H'FEB8

Bit	:	7	6	5	4	3	2	1	0
		P97DDR	P96DDR	P95DDR	P94DDR	P93DDR	P92DDR	—	—
Initial va	alue :	0	0	0	0	0	0	Undefined	Undefined
Read/W	/rite:	W	W	W	W	W	W	_	_
		Spe	cify input	or output f	or individu	al port 9 p	ins		

PADDR—Port A Data Direction Register	H'FEB9	Port A
--------------------------------------	--------	--------

Bit	:	7	6	5	4	3	2	1	0
		PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port A pins

PBDDR—Port B Data Direction Register

H'FEBA

Port B

Bit	:	7	6	5	4	3	2	1	0
		PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port B pins

PCDDR—Port C Data Direction Register

Bit	:	7	6	5	4	3	2	1	0
		PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port C pins

PDDDR—Port D Data Direction Register	H'FEBC	Port D
--------------------------------------	--------	--------

Bit	:	7	6	5	4	3	2	1	0
		PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
Initial va	alue :	0	0	0	0	0	0	0	0
Read/W	/rite:	W	W	W	W	W	W	W	W

Specify input or output for individual port D pins

H'FEBD

PEDDR—Port E Data Direction Register

Bit	:	7	6	5	4	3	2	1	0
		PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
Initial valu	e :	0	0	0	0	0	0	0	0
Read/Writ	e :	W	W	W	W	W	W	W	W

Specify input or output for individual port E pins

Port E

H'FEBB

PFDDR—Port F Data Direction Register

H'FEBE

Port F	
--------	--

Bit	:	7	6	5	4	3	2	1	0
		PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
Modes 4 to 6							1		I
Initial value	:	1	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W
Mode 7									
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	W	W	W	W	W	W	W	W

Specify input or output for individual port F pins

PGDDR—Port G Data Direction Register					H'FEBF			Port		
Bit	:	7	6	5	4	3	2	1	0	
		—	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR	
Modes 4 and	5									
Initial value	:	Undefined	Undefined	Undefined	1	0	0	0	0	
Read/Write	:	_	_	_	W	W	W	W	W	
Modes 6 and	7									
Initial value	:	Undefined	Undefined	Undefined	0	0	0	0	0	
Read/Write	:	—	_	_	W	W	W	W	W	
							1			

Specify input or output for individual port G pins

IPRA — Interrupt Priority Register A	H'FEC4	Interrupt Controller
IPRB — Interrupt Priority Register B	H'FEC5	Interrupt Controller
IPRC — Interrupt Priority Register C	H'FEC6	Interrupt Controller
IPRD — Interrupt Priority Register D	H'FEC7	Interrupt Controller
IPRE — Interrupt Priority Register E	H'FEC8	Interrupt Controller
IPRF — Interrupt Priority Register F	H'FEC9	Interrupt Controller
IPRG — Interrupt Priority Register G	H'FECA	Interrupt Controller
IPRH — Interrupt Priority Register H	H'FECB	Interrupt Controller
IPRI — Interrupt Priority Register I	H'FECC	Interrupt Controller
IPRJ — Interrupt Priority Register J	H'FECD	Interrupt Controller
IPRK — Interrupt Priority Register K	H'FECE	Interrupt Controller

Bit :	7	6	5	4	3	2	1	0
	_	IPR6	IPR5	IPR4	—	IPR2	IPR1	IPR0
Initial value :	0	1	1	1	0	1	1	1
Read/Write :		R/W	R/W	R/W	—	R/W	R/W	R/W

Set priority (levels 7 to 0) for interrupt sources

Correspondence between Interrupt Sources and IPR Settings

Pogistor	Ві	its		
Register	6 to 4	2 to 0		
IPRA	IRQ0	IRQ1		
IPRB	IRQ2	IRQ4		
	IRQ3	IRQ5		
IPRC	IRQ6	DTC		
	IRQ7			
IPRD	WDT	Refresh timer		
IPRE	*	A/D converter		
IPRF	TPU channel 0	TPU channel 1		
IPRG	TPU channel 2	TPU channel 3		
IPRH	TPU channel 4	TPU channel 5		
IPRI	8-bit timer channel 0	8-bit timer channel 1		
IPRJ	DMAC	SCI channel 0		
IPRK	SCI channel 1	SCI channel 2		

Note: * Reserved bits.

H'FED0

Bus Controller

Bit	:	7	6	5	4	3	2	1	0
		ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0
Modes 5 to	7								
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							
Mode 4									
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							

Area 7 to 0 Bus Width Control

0 Area n is designated for 16-bit access1 Area n is designated for 8-bit access

(n = 7 to 0)

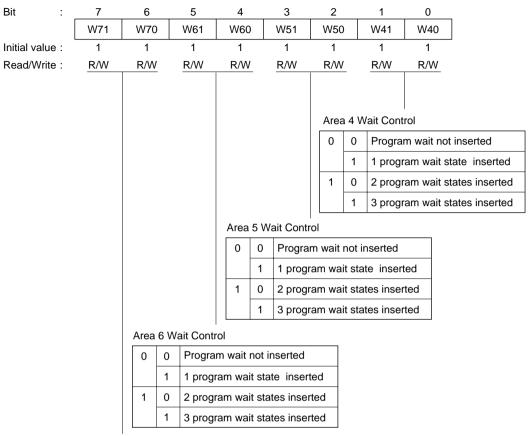
ASTCR—Access State Control Register

H'FED1

Bus Controller

Bit	:	7	6	5	4	3	2	1	0
		AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0
Initial valu	le :	1	1	1	1	1	1	1	1
Read/Wri	te:	R/W							

Area 7 to 0 Access State Control

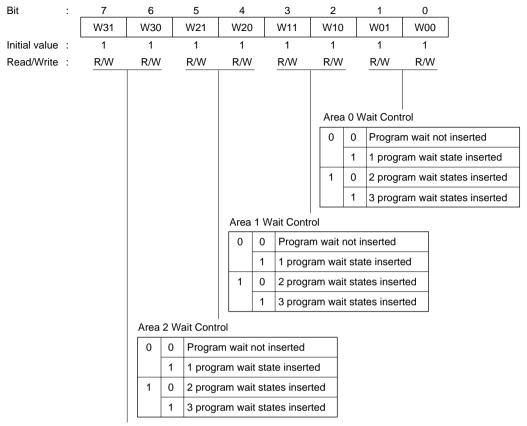

0	Area n is designated for 2-state access
	Wait state insertion in area n external space is disabled
1	Area n is designated for 3-state access
	Wait state insertion in area n external space is enabled

(n = 7 to 0)

WCRH—Wait Control Register H

H'FED2

Bus Controller

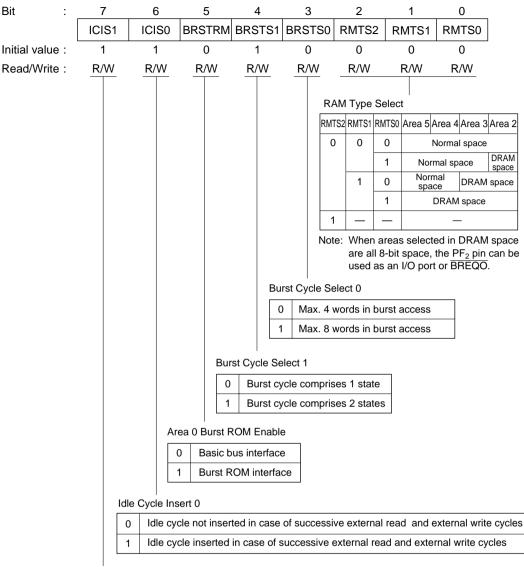

Area 7 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

WCRL—Wait Control Register L

H'FED3

Bus Controller

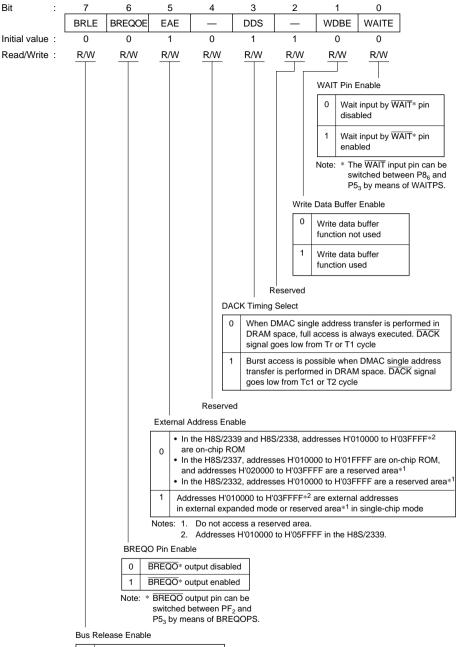


Area 3 Wait Control

0	0	Program wait not inserted
	1	1 program wait state inserted
1	0	2 program wait states inserted
	1	3 program wait states inserted

BCRH—Bus Control Register H

H'FED4

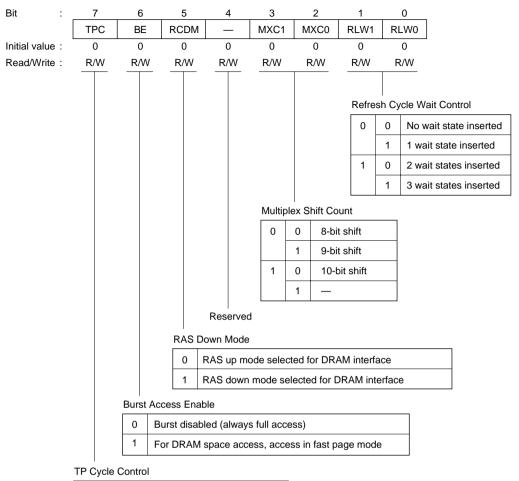


Idle Cycle Insert 1

0	Idle cycle not inserted in case of successive external read cycles in different areas
1	Idle cycle inserted in case of successive external read cycles in different areas

BCRL—Bus Control Register L

H'FED5

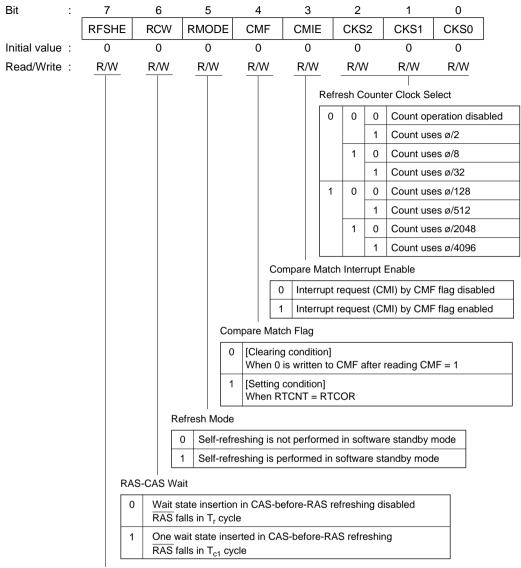


0	External bus release disabled
1	External bus release enabled

MCR—Memory Control Register

H'FED6

Bus Controller



0	1-state precharge cycle is inserted
1	2-state precharge cycle is inserted

DRAMCR—DRAM Control Register

H'FED7

Bus Controller

Refresh Control

0	Refresh control is not performed
1	Refresh control is performed

RTCNT—Refre	sh Time	er Coun	iter		Н	'FED8		Bus	Controller					
Bit :	7	6	5	5	4	3	2	1	0					
				_		_								
Initial value :	0	C)	0	0	0	0	0	0					
Read/Write :	R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W					
				Inter	nal clock	 count valu	e							
RTCOR—Refre	sh Tim	e Const	ant Re	gister	Η	'FED9		Bus	Controller					
Bit :	7	e	6	5	4	3	2	1	0					
Initial value :	1	1		1	1	1	1	1	1					
Read/Write :	R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W					
RAMER—RAM	Sets the period for compare match operations with RAMER—RAM Emulation Register H'FEDB (F.Z)													
							()	F-ZTAT ve	i sion oniy)					
Bit :	7	6	6	5	4	3	2	1	0					
	_		-	—		RAMS	RAM2	RAM1	RAM0					
Initial value :	0	C)	0	0	0	0	0	0					
Read/Write :	—	_	-	—		R/W	R/W	R/W	R/W					
					rea Selec									
		RAM2 *	RAM1	RAM0		RAM Area		Block N						
	0		0	0		00 to H'FF		RAM area,	-					
	1	0	EB0 (4 kby											
			EB1 (4 kby EB2 (4 kby											
			1	0		0 to H'002	EB3 (4 kby							
		1	0	0		0 to H'004								
		'		1		0 to H'005	EB4 (4 kbytes) EB5 (4 kbytes)							
			1	0	H'006000 to H'006FFF			EB6 (4 kb)	-					
				1		0 to H'007	EB7 (4 kby	-						
	*· Don'	tooro						. ,	,					

*: Don't care

MAR0AH—Memory Address Register 0AH H'FEE0 MAR0AL—Memory Address Register 0AL H'FEE2

Bit :	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MAR0AH :	_	—	—	—			—	—								
Initial value :	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
Read/Write :	_	_	_	_	_	_	_	_	R/W	R/W						
Bit :	_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAR0AL :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W														
														*:	Unde	efined

In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

DMAC

DMAC

IOAR0A—I/	O A	ddr	ess F	Regis	ter 0	A			H		Ι	DMAC	•					
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
IOAR0A	: [
Initial value	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Read/Write	: F	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	-														*:l	Jnde	fined	

In short address mode: Specifies transfer source/transfer destination address In full address mode: Not used ETCR0A—Transfer Count Register 0A

H'FEE6

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETCR0A :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Sequential mode Idle mode Normal mode							Tran	sfer	count	er						
Repeat mode	Tra	Transfer number storage register Transfer counter														
Block transfer mode		Block size storage register Block size counter														
mode	* : Undefine															
mode														*:	Unde	fined
		y Ad	dress	Reg	ister	0BH	[Н	['FE]	E 8				*:		
IAR0BH—Me	emory			-			[['FE] ['FE]					*:]	finec DMA DMA
IAR0BH—Me IAR0BL—Me Bit :	emory			-			25				21	20	19	* :]	DMA
IAR0BH—M6 IAR0BL—M6	emory emory	Ada	lress	Reg	ister	0BL		Н	['FE]	EA	21	20	19	-]	DMA DMA
IAR0BH—Mo IAR0BL—Mo Bit :	emory emory	Ada	lress	Reg	ister	0BL		Н	['FE]	EA	21	20	19	-]	DMA DMA
IAR0BH—Ma IAR0BL—Ma Bit : MAR0BH :	emory emory 31	7 Add 30 —	lress 29 —	Reg 28 —	ister 27 —	0BL 26 —	25	H 24 —	['FE] 23 *	EA 22 *	*	*	*	18]] 17 *	DMA DMA 16
IAR0BH—Mo IAR0BL—Me Bit : MAR0BH : Initial value :	emory emory 31	7 Add 30 —	lress 29 —	Reg 28 —	ister 27 —	0BL 26 —	25	H 24 —	['FE] 23 *	EA 22 *	*	*	*	18]] 17 *	DMA DMA 16
IAR0BH—Me IAR0BL—Me Bit : MAR0BH : Initial value : Read/Write :	emory mory 31 0 –	7 Add 30 — 0 —	29 0 	Reg 28 — 0 —	27 	0BL 26 — 0 —	25 — 0 —	H 24 — 0 —	23 * R/W	22 * R/W	* R/W	* R/W	* R/W	18 * R/W	17 * R/W	DMA DMA 16 * R/W
IAR0BH—Me IAR0BL—Me Bit : MAR0BH : Initial value : Read/Write : Bit :	emory mory 31 0 –	7 Add 30 — 0 —	29 0 	Reg 28 — 0 —	27 	0BL 26 — 0 —	25 — 0 —	H 24 — 0 —	23 * R/W	22 * R/W	* R/W	* R/W	* R/W	18 * R/W	17 * R/W	DMA DMA 16 * R/W
IAR0BH—Ma IAR0BL—Ma Bit : MAR0BH : Initial value : Read/Write : Bit : MAR0BL :	31 31 0 - 15	7 Add 30 0 14 *	17ess 29 0 13 *	Reg 28 — 0 — 12	ister 27 — 0 — 11 *	0BL 26 0 10 *	25 — 0 — 9	H 24 — 0 — 8	''FEI 23 * R/W 7 *	EA 22 * R/W 6	* R/W 5 *	* R/W 4	* R/W 3	18 * R/W 2 *] 3 7 8/W 1 *	DMA DMA 16 * R/W 0

In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

IOAR0B—I/O Address Register 0B

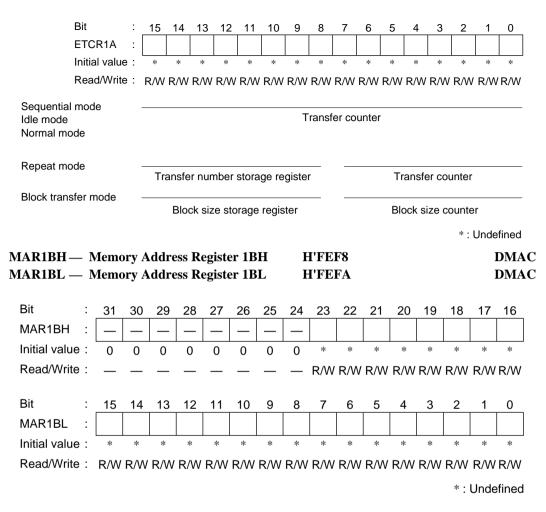
H'FEEC

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IOAR0B :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
														*:	Unde	fined
		In short address mode: Specifies transfer source/transfer destination address In full address mode: Not used														
ETCR0B—Tra	0B—Transfer Count Register 0B H'FEEE DMA															DMAC
Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETCR0B :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Sequential mode and idle mode							Т	ransf	fer co	ounter						
Repeat mode	Transfer number storage register Transfer counter															
Block transfer mode	Block transfer counter															
														*:	Unde	efined

Note: Not used in normal mode.

MAR1AH—Memory Address Register 1AHH'FEF0DMACMAR1AL—Memory Address Register 1ALH'FEF2DMAC

Bit :	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MAR1AH :	—	-	—	—	_	_	_	_								
Initial value :	0	0	0	0	0	0	0	0	*	*	*	*	*	*	*	*
Read/Write :	—	—	—	—	—	—	—	—	R/W	R/W						
Bit :	_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MAR1AL :																
Initial value :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Read/Write :	R/W	R/W														
														*:l	Jnde	ined


In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

IOAR1A—I/O) Ad	dr	ess F	Regis	ter 1	A		H'FEF4									OMA	С	
Bit :	_1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
IOAR1A :																			
Initial value :	*	k	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
Read/Write :	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
															* :	Unde	Jndefined		
	In short address mode: Specifies transfer sou														tion a	ddres	SS		

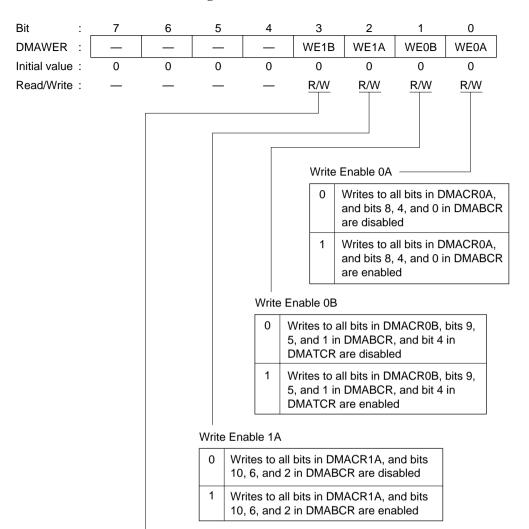
In short address mode: Specifies transfer source/transfer destination address In full address mode: Not used

ETCR1A—Transfer Count Register 1A

H'FEF6

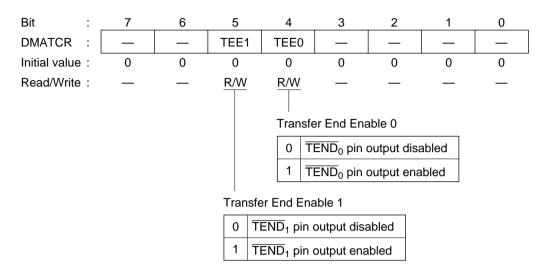
In short address mode: Specifies transfer source/transfer destination address In full address mode: Transfer destination address

IOAR1B—I/O Address Register 1B


H'FEFC

Bit :	15	14	13	12	11	10	9	8	7	. (6	5	4	3	2	1	0			
IOAR1B :																				
Initial value :	*	*	*	*	*	*	*	*	*	; ;	*	*	*	*	*	*	*			
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	/ R/V	/ R/	W R/	/W R	/W F	R/W	R/W	R/W	R/W	/ R/W			
	In short address mode: Specifies transfer source/transfer destinati															Unde	efined			
	In short address mode: Specifies transfer source/transfer destination address In full address mode: Not used															SS				
ETCR1B—Tra	CR1B—Transfer Count Register 1B H'FEFE																DMA	.C		
Bit	Bit : 15 14 13 12 11 10 9 8 7 6 5 4 3															1	0			
ETCR1	в:																			
Initial v	alue :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
Read/V	Vrite :	R/W	R/W	R/W	R/W	R/W	R/W I	R/W	R/W	R/W	R/W	R/W	R/W	/ R/W	/ R/W	R/W	/ R/W			
Sequential mod	le																			
and idle mode								Tr	ansf	er co	unte	r								
Repeat mode																				
		Т	ransf	er nu	mber	stora	ge re	giste	r				Trar	Transfer counter						
Block transfer n	node						D	ock t	rono	for or	ounte	. r								
							DI	UUK I	ans		Junite	1								
															* :	Und	efined			

Note: Not used in normal mode.


DMAWER—DMA Write Enable Register

H'FF00

Write Enable 1B

0	Writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR are disabled
1	Writes to all bits in DMACR1B, bits 11, 7, and 3 in DMABCR, and bit 5 in DMATCR are enabled

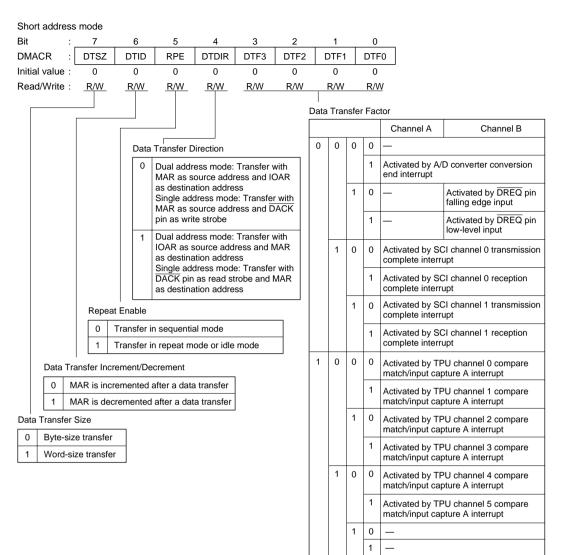
DMACR0A—DMA Control Register 0A	H'FF02	DMAC
DMACR0B—DMA Control Register 0B	H'FF03	DMAC
DMACR1A—DMA Control Register 1A	H'FF04	DMAC
DMACR1B—DMA Control Register 1B	H'FF05	DMAC

Full address mode

Bit :	15	14	13	12	11	10	9	8	_			
DMACRA :	DTSZ	SAID	SAIDE	BLKDIR	BLKE	—	—	_				
Initial value :	0	0	0	0	0	0	0	0	1			
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
			Block	Block Direction/Block Enable								
			0	0 Transfe	er in normal	mode						
				1 Transfe	er in block t	ransfer mod	le, destinati	on side is b	lock area			
			1	0 Transfe	Transfer in normal mode							
				1 Transfe	er in block t	n block transfer mode, source side is block area						
		Source	e Address I	ncrement/D	ecrement							
		0	0 MAR	A is fixed								
			1 MAR	A is increme	ented after	a data trans	fer					
		1	0 MAR	A is fixed								
			1 MAR	A is decrem	ented after	a data tran	sfer					
	Data Tran	sfer Size										

0	Byte-size transfer
1	Word-size transfer

Full address mode (cont)


Bit :	7	6	5	4	3	2	1	0
DMACRB :	_	DAID	DAIDE	—	DTF3	DTF2	DTF1	DTF0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Data Transfer Factor

DTF 3	DTF 2	DTF 1	DTF 0	Block Transfer Mode	Normal Mode
0	0	0	0	—	_
			1	Activated by A/D converter conversion end interrupt	_
		1	0	Activated by DREQ pin falling edge input	Activated by DREQ pin falling edge input
			1	Activated by \overline{DREQ} pin low-level input	Activated by DREQ pin low-level input
	1	0	0	Activated by SCI channel 0 transmission complete interrupt	_
			1	Activated by SCI channel 0 reception complete interrupt	_
		1	0	Activated by SCI channel 1 transmission complete interrupt	Auto-request (cycle steal)
			1	Activated by SCI channel 1 reception complete interrupt	Auto-request (burst)
1	0	0	0	Activated by TPU channel 0 compare match/input capture A interrupt	_
			1	Activated by TPU channel 1 compare match/input capture A interrupt	_
		1	0	Activated by TPU channel 2 compare match/input capture A interrupt	_
			1	Activated by TPU channel 3 compare match/input capture A interrupt	_
	1	0	0	Activated by TPU channel 4 compare match/input capture A interrupt	_
			1	Activated by TPU channel 5 compare match/input capture A interrupt	_
		1	0	_	_
			1	-	_

Destination Address Increment/Decrement

0	0	MARB is fixed
	1	MARB is incremented after a data transfer
1	0	MARB is fixed
	1	MARB is decremented after a data transfer

DMABCRH — DMA Band Control Register DMABCRL — DMA Band Control Register H'FF06 H'FF07 DMAC DMAC

Full address mo	ode									
Bit :	15	14	13	12	11	10	9	8		
DMABCRH :	FAE1	FAE0	—	—	DTA1	-	DTA0	—		
Initial value :	0	0	0	0	0	0	0	0		
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
						Channel 0 Data Transfer Acknowledge 0 Clearing of selected internal interrupt source at DMA transfer is disabled 1 Clearing of selected internal interrupt source at DMA transfer is enabled				
					Channe	l 1 Data Ti	ansfer Ac	knowledge	9	
						0 Clearing of selected internal interrupt source at time of DMA transfer is disabled				
						Clearing o DMA trans			terrupt source at time of	
		Channel	0 Full Ad	dress Ena	hle					
			Short addr							
			Full addres							
	Channe	l 1 Full Add	Iress Enat	ble						
	0	Short addre	ess mode							
	1 1	Full address	s mode							

(Continued on next page)

Full address m	ode (cont)							
Bit :	7	6	5	4	3	2	1	0
DMABCRL :	DTME1	DTE1	DTME0	DTE0	DTIE1B	DTIE1A	DTIE0B	DTIE0A
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
								Channel 0 Data Transfer Interrupt Enable A
								0 Transfer end interrupt disabled
								1 Transfer end interrupt enabled
							Chann Enable	el 0 Data Transfer Interrupt ∋ B
							0	Transfer suspended interrupt disabled
							1	Transfer suspended interrupt enabled
						Channel 1		nsfor
						Interrupt E		
						0 Tra	nsfer end	l interrupt disabled
						1 Tra	nsfer end	l interrupt enabled
					Enable E	1 Data Tra 3	ansfer Int	errupt
					0 T	ransfer su	spended	interrupt disabled
					1 T	ransfer su	spended	interrupt enabled
							•	
					el 0 Data T			
				0		sfer disable		
				1	Data trans	sfer enable	ed	
			Channe	l 0 Data T	ransfer M	aster Enab	ole	_
					fer disable			
					0 by an N		ot	-
			1 C	ata trans	fer enable	d		
		Channel 1	Data Trar	nsfer Enal	ble			
		0 Da	ta transfer	disabled]			
		1 Da	ta transfer	enabled	1			
	Channel	1 Data T	ansfer Ma	ster Enab	le			

0	Data transfer disabled. In burst mode, cleared to 0 by an NMI interrupt
1	Data transfer enabled

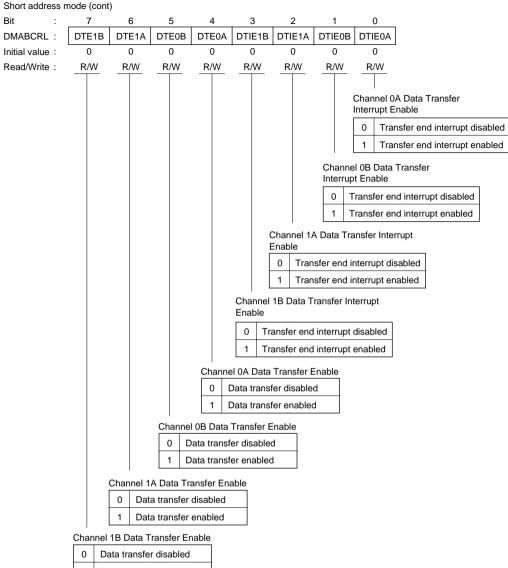
(Continued on next page)

HITACHI

Full address mode (cont)

Short addres	s mo	ae									
Bit	: ,	15	14	13	12	11		10		9	8
DMABCRH	:	FAE1	FAE0	SAE1	SAE0	DTA'	1B	DTA1A	DT/	A0B	DTA0A
Initial value	:	0	0	0	0	0		0	()	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	V	R/W	R/	W	R/W
											Channel 0A Data Transfer Acknowledge
											0 Clearing of selected internal interrupt source at time of DMA transfer is disabled
											1 Clearing of selected internal interrupt source at time of DMA transfer is enabled
									Chanr	nel 0	B Data Transfer Acknowledge
									0		aring of selected internal interrupt source me of DMA transfer is disabled
									1	Clea	aring of selected internal interrupt
										sou	rce at time of DMA transfer is enabled
							С	hannel 1	IA Dat	a Tra	ansfer Acknowledge
											ected internal interrupt source
											transfer is disabled
											ected internal interrupt of DMA transfer is enabled
						Chan	nel 1	B Data	Transf	er A	cknowledge
						0		0			nal interrupt ansfer is disabled
						1	Cle	earing of s	selected	d inte	rnal interrupt
							SOL	urce at tin	ne of D	MA tr	ansfer is enabled
					Channe	el 0B S	ingle	Addres	s Enal	ole	
					0	Transf	er in	dual ad	dress	mode	e
					1	Transf	er in	single a	ddres	s mo	de
				Channe	I 1B Singl	e Addr	ess F	Inable			
					Transfer i				_		
					Transfer in						
			I				Juuu		uo		
				Full Addr		le					
				ort addres							
			1 Fu	II address	mode						
		Channel		iress Enab	ble						

Short address mode


0

1

Short address mode

Full address mode

(Continued	on	next	nage)
<u>ا</u>	Continucu	on	nont	pager

1 Data transfer enabled

ISCRH — IR ISCRL — IR					FF2C FF2D		Interrupt Controller Interrupt Controller		
ISCRH									
Bit :		15	14	13	12	11	10	9	8
	I	RQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
Initial value :		0	0	0	0	0	0	0	0
Read/Write :		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ISCRL Bit :		7	6	IRQ7 5	to IRQ4 S	ense Cont	rol 2	1	0
	Γ	RQ3SCB	IRQ3SCA	-	IRQ2SCA	-	IRQ1SCA		
Initial value :		0	0	0	0	0	0	0	0
Read/Write :		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Falling edge of \overline{IRQ}_n input Rising edge of \overline{IRQ}_n input

Both falling and rising edges of \overline{IRQ}_n input

(n = 7 to 0)

1

0

1

1

HITACHI	
---------	--

IER—IRQ Enable Register

H'FF2E

Interrupt Controller

Bit :	7	6	5	4	3	2	1	0
	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	IRQn Enable 0 IRQn interrupt disabled 1 IRQn interrupt enabled (n = 7 to 0)							
ISR—IRQ Status Register				E	I'FF2F		Interrupt	Controller

Bit :	7	6	5	4	3	2	1	0
	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/(W)*							

Indicate the status of IRQ7 to IRQ0 interrupt requests

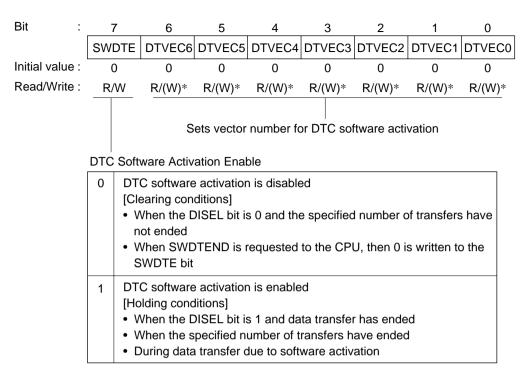
Note: * Can only be written with 0 for flag clearing.

DTCERA to DTCERF—DTC Enable Registers H'FF30 to H'FF35

Bit	:	7	6	5	4	3	2	1	0
		DTCE7	DTCE6	DTCE5	DTCE4	DTCE3	DTCE2	DTCE1	DTCE0
Initial valu	e :	0	0	0	0	0	0	0	0
Read/Writ	e :	R/W							

DTC Activation Enable

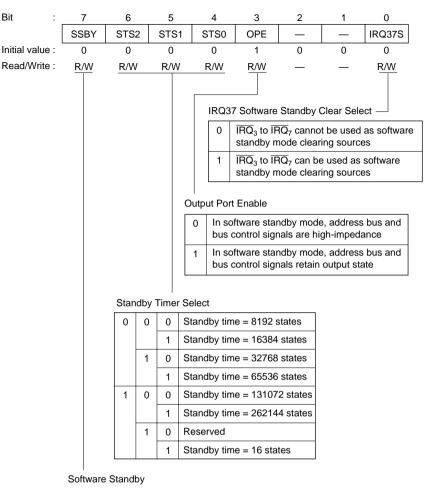
0	DTC activation by this interrupt is disabled [Clearing conditions] • When the DISEL bit is 1 and data transfer has ended • When the specified number of transfers have ended
1	DTC activation by this interrupt is enabled [Holding condition] When the DISEL bit is 0 and the specified number of transfers have not ended


Correspondence between Interrupt Sources and DTCER

				Bits				
Register	7	6	5	4	3	2	1	0
DTCERA	IRQ0	IRQ1	IRQ2	IRQ3	IRQ4	IRQ5	IRQ6	IRQ7
DTCERB	_	ADI	TGI0A	TGI0B	TGI0C	TGI0D	TGI1A	TGI1B
DTCERC	TGI2A	TGI2B	TGI3A	TGI3B	TGI3C	TGI3D	TGI4A	TGI4B
DTCERD	_	_	TGI5A	TGI5B	CMIA0	CMIB0	CMIA1	CMIB1
DTCERE	DMTEND0A	DMTEND0B	DMTEND1A	DMTEND1B	RXI0	TXI0	RXI1	TXI1
DTCERF	RXI2	TXI2	_	_	_	_	_	_

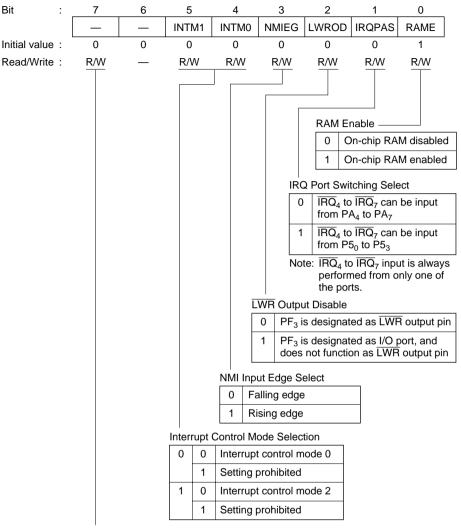
Note: For DTCE bit setting, read/write operations must be performed using bit-manipulation instructions such as BSET and BCLR. For the initial setting only, however, when multiple activation sources are set at one time, it is possible to disable interrupts and write after executing a dummy read on the relevant register.

DTVECR—DTC Vector Register


H'FF37

Note: * DTVEC6 to DTVEC0 bits can be written to when SWDTE = 0.

SBYCR—Standby Control Register


H'FF38

0	Transition to sleep mode after execution of SLEEP instruction
1	Transition to software standby mode after execution of SLEEP instruction

SYSCR—System Control Register

H'FF39

Reserved

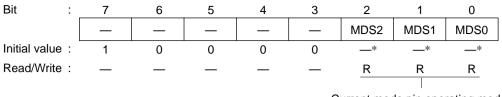
Only 0 should be written to this bit

SCKCR—System Clock Control Register

H'FF3A

Clock Pulse Generator

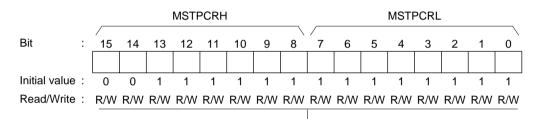
Bit :	7	6	5	4		3	2	1	0	
	PSTOP	_	DI	v _	.	_	SCK2	SCK1	SCK0	
Initial value :	0	0	C	0 0		0	0	0	0	
Read/Write :	R/W	R/W	R/	w	-	_	R/W	R/W	R/W	
				iaian						
			Rat	ision tio						
			Sel							
		Reserve	لم							
		Only 0 s		e						
		written to								
		System (Clock S	elect —						
					DIV	′ = 0			DIV =	1
		0 0	0	Bus maste	er is i	in high-sp	eed mode	Bus mas	ter is in hi	gh-speed mode
			1	Medium-sp	peed	l clock is ø	ø/2	Clock su	pplied to e	entire chip is ø/2
		1	0	Medium-sp	peec	l clock is ø	ø/4	Clock su	pplied to e	entire chip is ø/4
			1	Medium-sp	peec	l clock is ø	ø/8	Clock su	pplied to e	entire chip is ø/8
		1 0	0	Medium-sp	peec	l clock is ø	ø/16	—		
			1	Medium-sp	peed	d clock is ø	ø/32	—		
		1		_				—		
		I								


ø Clock Output Control

P	STOP	Normal Operation	Sleep Mode	Software Standby Mode	Hardware Standby Mode
	0	ø output	ø output	Fixed high	High impedance
	1	Fixed high	Fixed high	Fixed high	High impedance

MDCR—Mode Control Register

H'FF3B

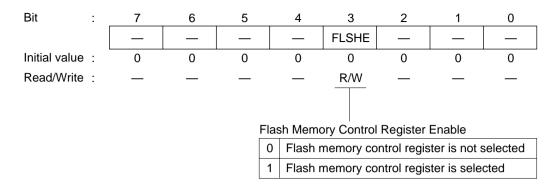

MCU

Current mode pin operating mode

Note: * Determined by pins MD₂ to MD₀

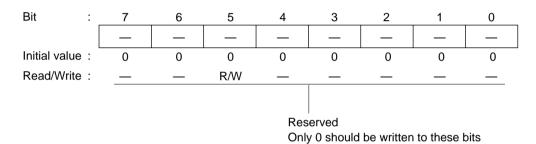
MSTPCRH — Module Stop Control Register HH'FF3CPower-Down StateMSTPCRL — Module Stop Control Register LH'FF3DPower-Down State

Specifies module stop mode

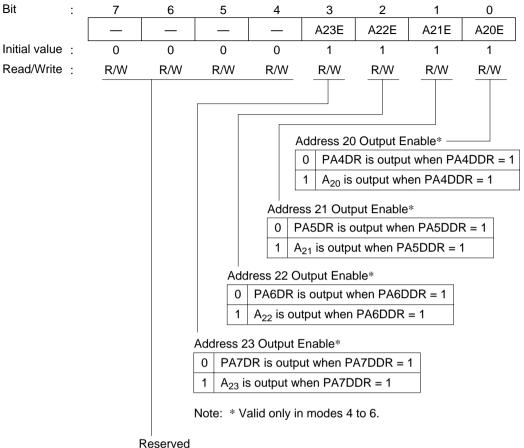

0	Module stop mode cleared
1	Module stop mode set

MSTP Bits and On-Chip Supporting Modules

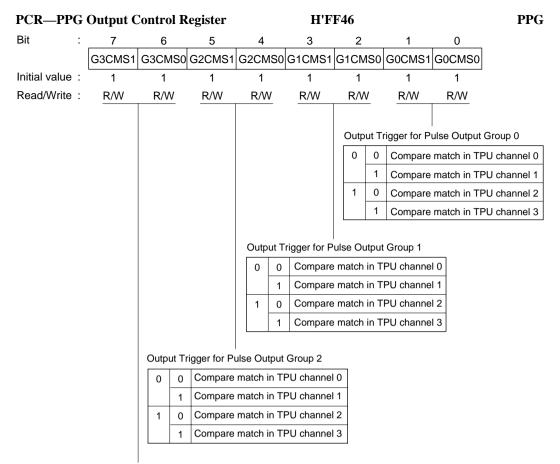
Register	Bits	Module
MSTPCRH	MSTP15	DMAC
	MSTP14	DTC
	MSTP13	TPU
	MSTP12	8-bit timer
	MSTP11	PPG
	MSTP10	DA0,1
	MSTP9	A/D
	MSTP8	—
MSTPCRL	MSTP7	SCI2
	MSTP6	SCI1
	MSTP5	SCI0
	MSTP4	DA2, 3
	MSTP3	-
	MSTP2	-
	MSTP1	-
	MSTP0	-


SYSCR2—System Control Register 2

H'FF42


Reserved Register

H'FF44



PFCR1—Port Function Control Register 1

H'FF45

Only 0 should be written to these bits

Output Trigger for Pulse Output Group 3

0	0	Compare match in TPU channel 0
	1	Compare match in TPU channel 1
1	0	Compare match in TPU channel 2
	1	Compare match in TPU channel 3

Bit :	7	6	5	4	3	2	1	0
	G3INV	G2INV	G1INV	G0INV	G3NOV	G2NOV	G1NOV	G0NOV
Initial value :	1	1	1	1	0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Output Gro tion Select	oup n Norm	nal/Non-Ov	verlap	
			v	lormal ope alues upda PU chann	ated at cor	•	0 1	· ·
			(Ion-overlag independe or B in the s	nt 1 and 0	output at o	compare n	U .
								(n = 3 to 0)
	Pulse Out	put Group	n Direct/	Inverse Ou	itput			

0	Inverse output for pulse output group n (low-level output at pin for a 1 in PODRH)
1	Direct output for pulse output group n (high-level output at pin for a 1 in PODRH)

(n = 3 to 0)

NDERH — Next Data Enable Register H	H'FF48	PPG
NDERL — Next Data Enable Register L	H'FF49	PPG

NDERH

Bit :	7	6	5	4	3	2	1	0
	NDER	15 NDER14	NDER13	NDER12	NDER11	NDER10	NDER9	NDER8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Pulse Output Enable/Disable

0	Pulse outputs PO_{15} to PO_8 are disabled
1	Pulse outputs PO_{15} to PO_8 are enabled

NDERL

Bit	:	7	6	5	4	3	2	1	0
		NDER7	NDER6	NDER5	NDER4	NDER3	NDER2	NDER1	NDER0
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Pu	lse Output	Enable/D	isable			

0	Pulse outputs PO ₇ to PO ₀ are disabled
1	Pulse outputs PO_7 to PO_0 are enabled

PODRH — Output Data Register H PODRL — Output Data Register L H'FF4A H'FF4B

PODRH

Bit :	7	6	5	4	3	2	1	0
	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*
		:	Stores out	put data fo	or use in p	ulse outpu	ıt	

PODRL

Bit :	7	6	5	4	3	2	1	0
	POD7	POD6	POD5	POD4	POD3	POD2	POD1	POD0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/(W)*							

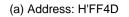
Stores output data for use in pulse output

Note: * A bit that has been set for pulse output by NDER is read-only.

NDRH—Next Data Register H

H'FF4C (FF4E)

(1) When pulse output group output triggers are the same


(a) Address: H'FF4C Bit 6 5 4 3 2 1 0 ÷ 7 NDR15 NDR14 NDR13 NDR12 NDR11 NDR10 NDR9 NDR8 Initial value : 0 0 0 0 0 0 0 0 Read/Write : R/W R/W R/W R/W R/W R/W R/W R/W Stores the next data for pulse output groups 3 and 2 (b) Address: H'FF4E Bit : 7 5 4 3 2 1 0 6 Initial value : 1 1 1 1 1 1 1 1 Read/Write : (2) When pulse output group output triggers are different (a) Address: H'FF4C Bit 7 6 5 4 3 2 1 0 NDR14 NDR15 NDR13 NDR12 Initial value : 0 0 0 0 1 1 1 1 Read/Write : R/W R/W R/W R/W Stores the next data for pulse output group 3 (b) Address: H'FF4E Bit 7 6 5 4 3 2 1 0 NDR11 NDR10 NDR9 NDR8 Initial value : 1 1 1 1 0 0 0 0 Read/Write : R/W R/W R/W R/W Stores the next data for pulse output group 2

NDRL—Next Data Register L

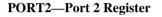
H'FF4D (FF4F)

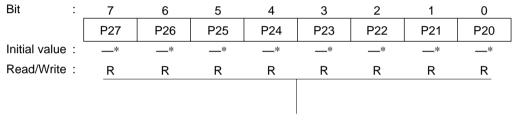
PPG

(1) When pulse output group output triggers are the same

Bit :	7	6	5	4	3	2	1	0
	NDR7	NDR6	NDR5	NDR4	NDR3	NDR2	NDR1	NDR0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Sto	res the nex	t data for pu	ulse output	groups 1 an	id 0	
(b) Address	: H'FF4F							
Bit :	7	6	5	4	3	2	1	0
	_	_	_	_	_	_	_	_
Initial value :	1	1	1	1	1	1	1	1
Read/Write :	_	_	_	_	_	_	_	_
(2) When pulse or (a) Address Bit :		6	5	4	3	2	1	0
	, NDR7	NDR6	NDR5	NDR4	<u> </u>			
Initial value:	0	0	0	0	1	1	1	1
Read/Write:	R/W	R/W	R/W	R/W	_	_	_	
	Stores the	next data fo	pr pulse out	put aroup 1				
(b) Address				1				
Bit :	7	6	5	4	3	2	1	0
		—	—		NDR3	NDR2	NDR1	NDR0
Initial value :	1	1	1	1	0	0	0	0
Read/Write :	—	_	—	_	R/W	R/W	R/W	R/W
					Stores the	next data fo	r pulse out	out group 0

PORT1—Port 1 Register


Bit 5 3 2 : 7 6 4 1 0 P17 P15 P13 P16 P14 P10 P12 P11 ___* Initial value : ___* ___* ___* ___* ___* ___* ___* Read/Write : R R R R R R R R


State of port 1 pins

H'FF51

H'FF50

Note: * Determined by the state of pins $P1_7$ to $P1_0$.

State of port 2 pins

H'FF52

Note: * Determined by the state of pins $P2_7$ to $P2_0$.

PORT3-	-Port 3	Register
--------	---------	----------

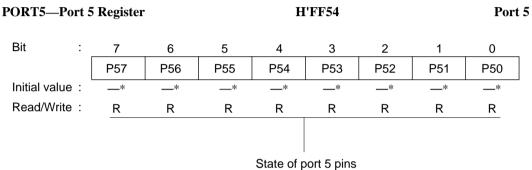
Bit :	7	6	5	4	3	2	1	0
	—	—	P35	P34	P33	P32	P31	P30
Initial value :	Undefined	Undefined	*	*	*	*	*	*
Read/Write :	_	_	R	R	R	R	R	R

State of port 3 pins

Note: * Determined by the state of pins $P3_5$ to $P3_0$.

Port 1

Port 2


Port 3

PORT4—Port 4 Register

Bit :	7	6	5	4	3	2	1	0
	P47	P46	P45	P44	P43	P42	P41	P40
Initial value :	*	*	*	*	*	*	*	*
Read/Write :	R	R	R	R	R	R	R	R

State of port 4 pins

Note: * Determined by the state of pins P47 to P40.

Note: * Determined by the state of pins P57 to P50.

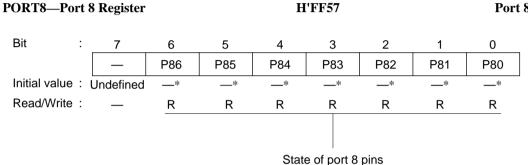
PORT6-	–Port 6	Register	•			Port 6				
Bit	:	7	6	5	4	3	2	1	0	
		P67	P66	P65	P64	P63	P62	P61	P60	
Initial va	alue :	*	*	*	*	*	*	*	*	
Read/W	Vrite :	R	R	R	R	R	R	R	R	
					State of p	ort 6 pins				

Note: * Determined by the state of pins P67 to P60.

HITACHI

Port 4

H'FF53


I'FF55

PORT7—Port 7 Register

Bit 5 4 3 2 0 : 7 6 1 P75 P74 P73 P72 P71 P70 Initial value : Undefined Undefined __* ___* __* __* ___* ___* Read/Write : R R R R R R

State of port 7 pins

Note: * Determined by the state of pins P7₅ to P7₀.

Note: * Determined by the state of pins P8₆ to P8₀.

PORT9—Port 9 Reg	gister
------------------	--------

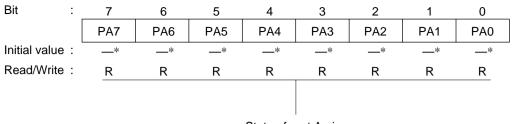
Bit :	7	6	5	4	3	2	1	0
	P97	P96	P95	P94	P93	P92	_	—
Initial value :	*	*	*	*	*	*	Undefined	Undefined
Read/Write :	R	R	R	R	R	R	—	—
			State of p	ort 9 pins				

Note: * Determined by the state of pins P97 to P92.

HITACHI

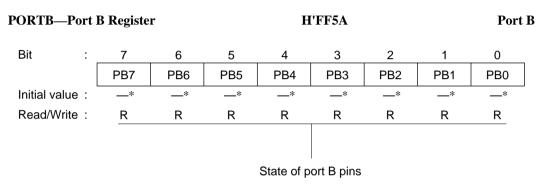
Port 8

Port 9


H'FF57

H'FF56

H'FF58

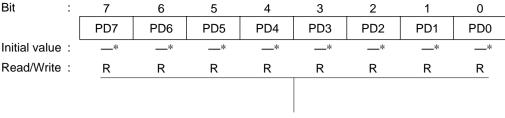

PORTA—Port A Register

H'FF59

State of port A pins

Note: * Determined by the state of pins PA7 to PA0.

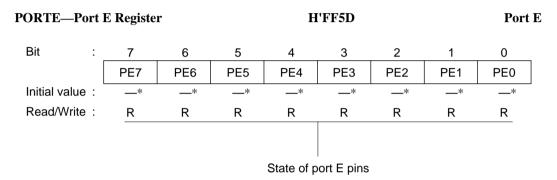
Note: * Determined by the state of pins PB_7 to PB_0 .


PORTC—Port C Register H'FF5B Port C Bit : 7 6 5 4 3 2 1 0 PC7 PC5 PC6 PC4 PC3 PC2 PC1 PC0 __* __* __* Initial value : ___* __* __* ___* ___* Read/Write : R R R R R R R R

State of port C pins

Note: * Determined by the state of pins PC_7 to PC_0 .

HITACHI


PORTD—Port D Register

State of port D pins

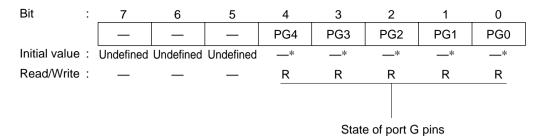
H'FF5C

Note: * Determined by the state of pins PD_7 to PD_0 .

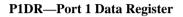
Note: * Determined by the state of pins PE₇ to PE₀.

PORTF-	–Port F	Register
--------	---------	----------

Bit :	7	6	5	4	3	2	1	0
	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
Initial value :	*	*	*	*	*	*	*	*
Read/Write :	R	R	R	R	R	R	R	R
				01-11-	and E with a			


State of port F pins

Note: * Determined by the state of pins PF_7 to PF_0 .


H'FF5E

443

PORTG—Port G Register

Note: * Determined by the state of pins PG₄ to PG₀.

Bit	:	7	6	5	4	3	2	1	0
		P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							

Stores output data for port 1 pins (P17 to P10)

H'FF61

H'FF60

P2DR—Port 2 Data Register

444

Bit	:	7	6	5	4	3	2	1	0
		P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							
			_						

Stores output data for port 2 pins (P27 to P20)

H'FF5F

Port 2

Port 1

P3DR—Port 3 Data Register

Bit :	7	6	5	4	3	2	1	0	
	—	_	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	
Initial value :	Undefined	Undefined	0	0	0	0	0	0	
Read/Write :	—	—	R/W	R/W	R/W	R/W	R/W	R/W	
		Store	es output o	data for po	rt 3 pins (I	P3 ₅ to P3 ₀)		
P5DR—Port 5	DR—Port 5 Data Register H'FF64								
10211 10100	Dutu Hegi	5001			1101			Port 5	
Bit :	7	6	5	4	3	2	1	0	
	C		5			2 P52DR	1 P51DR		
	7		_	4	3		1 P51DR 0	0	
Bit :	7	6	_	4	3 P53DR	P52DR	-	0 P50DR	
Bit : Initial value :	7	6	_	4	3 P53DR 0	P52DR 0	0	0 P50DR 0	
Bit : Initial value :	7	6	_	4 — Undefined —	3 P53DR 0 R/W	P52DR 0 R/W	0 R/W	0 P50DR 0	

P6DR—Port 6 Data Register

Bit

	P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

: 7 6 5<u>4 3</u> 2 1

Stores output data for port 6 pins (P67 to P60)

H'FF65

H'FF62

Port 6

445

0

P7DR—Port 7 Data Register

Bit	:	7	6	5	4	3	2	1	0
		—	—	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR
Initial value	:	Undefined	Undefined	0	0	0	0	0	0
Read/Write	:	_	_	R/W	R/W	R/W	R/W	R/W	R/W

Stores output data for port 7 pins (P7₅ to P7₀)

P8DR—Port 8 Data Register

Bit :	7		6	5	4	3	2	1	0
	-	-	P86DR	P85DR	P84DR	P83DR	P82DR	P81DR	P80DR
Initial value:	Unde	fined	0	0	0	0	0	0	0
Read/Write :	_	-	R/W						

Stores output data for port 8 pins ($P8_6$ to $P8_0$)

P9DR—Port 9 Data Register

446

H'FF68

Port 9

Bit :	7	6	5	4	3	2	1	0
	P97DR	P96DR	P95DR	P94DR	P93DR	P92DR	_	—
Initial value :	0	0	0	0	0	0	Undefined	Undefined
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	—	—
				r port 0 pi				

Stores output data for port 9 pins (P97 to P92)

H'FF66

H'FF67

Port 8

PADR—Port A Data Register

Bit	:	7	6	5	4	3	2	1	0
		PA7DR	PA6DR	PA5DR	PA4DR	PA3DR	PA2DR	PA1DR	PA0DR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							

Stores output data for port A pins (PA7 to PA0)

Bit :	7	6	5	4	3	2	1	0
	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

Stores output data for port B pins (PB7 to PB0)

PCDR—Po	ort C	Data Reg	gister		H'FF6B					
Bit	:	7	6	5	4	3	2	1	0	
		PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	
Initial valu	ie :	0	0	0	0	0	0	0	0	
Read/Writ	te :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Stores output data for port C pins (PC7 to PC0)

H'FF6A

H'FF69

Port B

Bit	:	7	6	5	4	3	2	1	0
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							

Stores output data for port D pins (PD7 to PD0)

H'FF6D

H'FF6C

PEDR—Port E Data Register

Bit :	7	6	5	4	3	2	1	0
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

Stores output data for port E pins (PE₇ to PE₀)

H'FF6E

PFDR—Port F Data Register

448

Bit :	7	6	5	4	3	2	1	0	
	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	
Initial value :	0	0	0	0	0	0	0	0	
Read/Write :	R/W								
Stores output data for port F pins (PF ₇ to PF ₀)									

HITACHI

Port F

Port D

Port E

PGDR—Port G Data Register

Bit 4 3 2 1 0 : 7 6 5 PG4DR PG3DR PG2DR PG1DR PG0DR Initial value : Undefined Undefined Undefined 0 0 0 0 0 Read/Write : R/W R/W R/W R/W R/W

Stores output data for port G pins (PG_4 to PG_0)

PAPCR—Port A MOS Pull-Up Control Register H'FF70

Bit : 4 7 6 5 3 2 1 0 PA6PCR PA5PCR PA4PCR PA3PCR PA2PCR PA1PCR PA0PCR PA7PCR Initial value : 0 0 0 0 0 0 0 0 Read/Write : R/W R/W R/W R/W R/W R/W R/W R/W

Controls the MOS input pull-up function incorporated into port A on a bit-by-bit basis

PBPCR—Port B MOS Pull-Up Control Register H'FF71

Bit	:	7	6	5	4	3	2	1	0
		PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							

Controls the MOS input pull-up function incorporated into port B on a bit-by-bit basis

H'FF6F

Port A

Port B

PCPCR—Port C MOS Pull-Up Control Register H'FF72

Bit :	7	6	5	4	3	2	1	0
	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

Controls the MOS input pull-up function incorporated into port C on a bit-by-bit basis

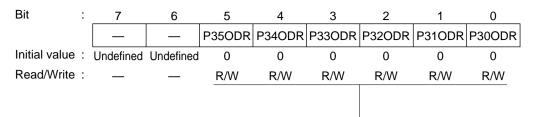
PDPCR—Port D MOS Pull-Up Control Register H'FF73

Bit	:	7	6	5	4	3	2	1	0
		PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
Initial value	:	0	0	0	0	0	0	0	0
Read/Write	:	R/W							

Controls the MOS input pull-up function incorporated into port D on a bit-by-bit basis

PEPCR—Port E MOS Pull-Up Control Register H'FF74

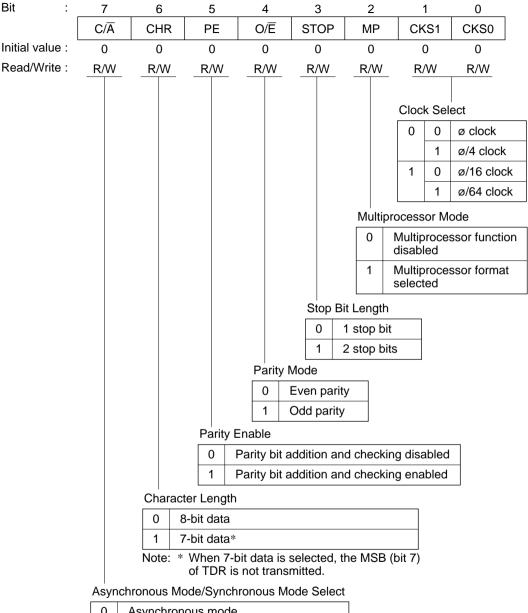
Port E


Bit :	7	6	5	4	3	2	1	0
	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W							

Controls the MOS input pull-up function incorporated into port E on a bit-by-bit basis

HITACHI

Port D

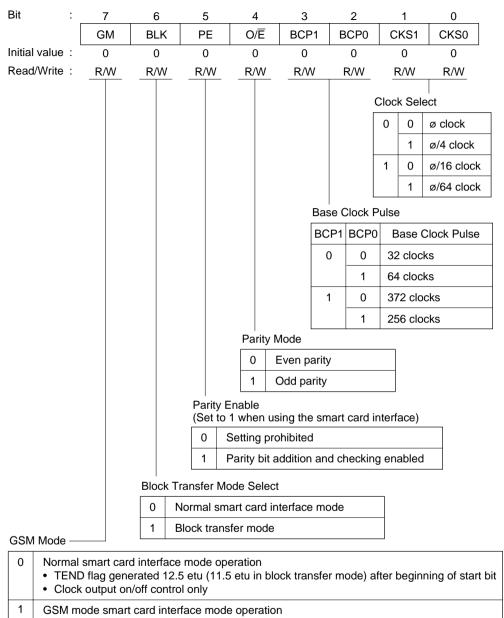

Controls the PMOS on/off status for each port 3 pin (P3₅ to P3₀)

PAODR—Port A G	Open Drain	Control Register	H'FF77
	• F • ••		

Port A

Bit	:	7	6	5	4	3	2	1	0
		PA7ODR	PA6ODR	PA5ODR	PA40DR	PA3ODR	PA2ODR	PA10DR	PA0ODR
Initial value	e :	0	0	0	0	0	0	0	0
Read/Write	e :	R/W							

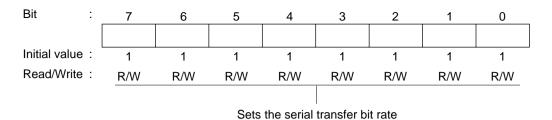
Controls the PMOS on/off status for each port A pin (PA7 to PA0)



1 Synchronous mode

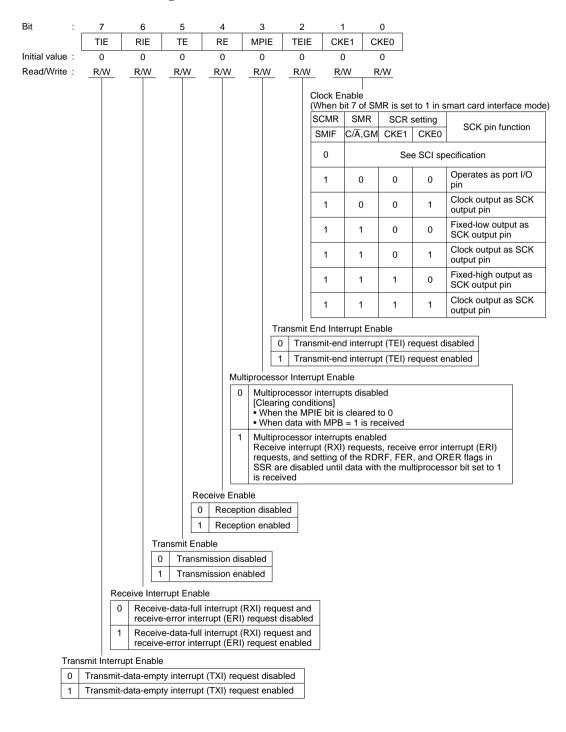
SMR0—Serial Mode Register 0

H'FF78

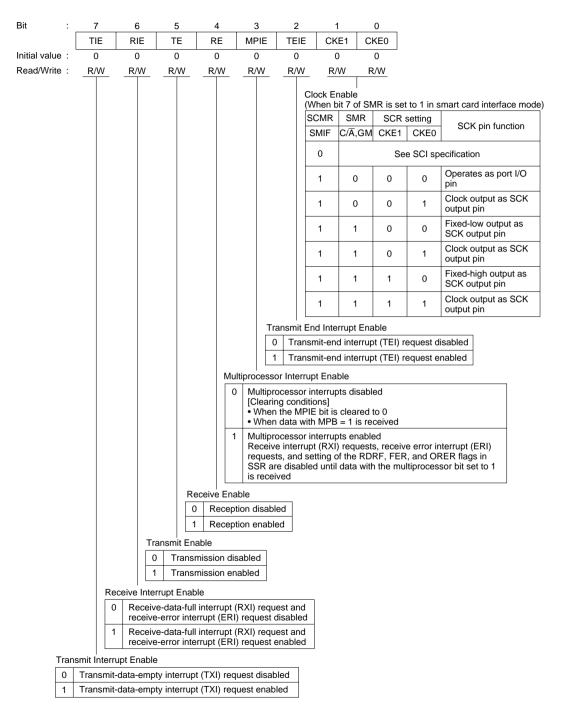

Smart Card Interface 0

• TEND flag generated 11.0 etu after beginning of start bit

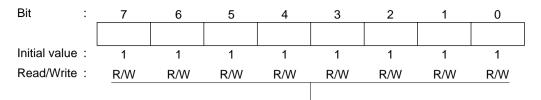
• Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control


Note: etu (Elementary Time Unit): Interval for transfer of one bit

Note: For details, see section 11.2.8, Bit Rate Register (BRR), in the Hardware Manual.

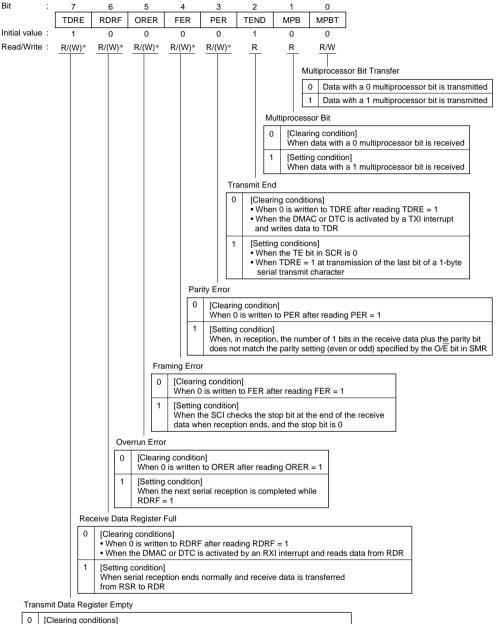

SCR0—Serial Control Register 0

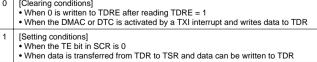
H'FF7A



SCR0—Serial Control Register 0

H'FF7A

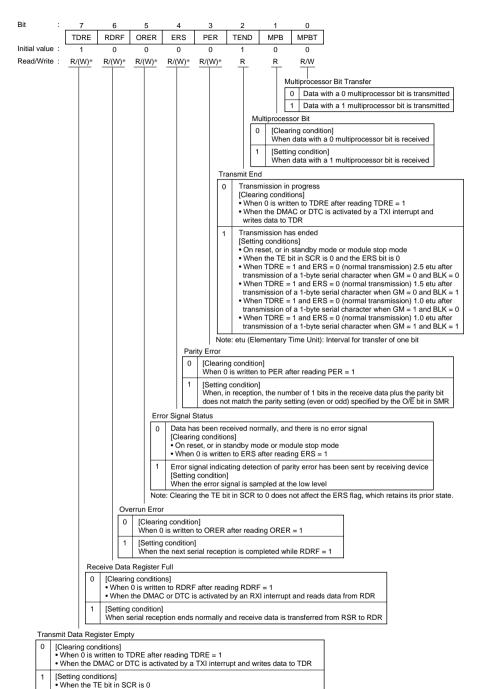

TDR0—Transmit Data Register 0



Stores data for serial transmission

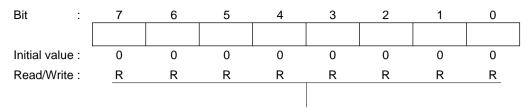
SSR0—Serial Status Register 0

H'FF7C



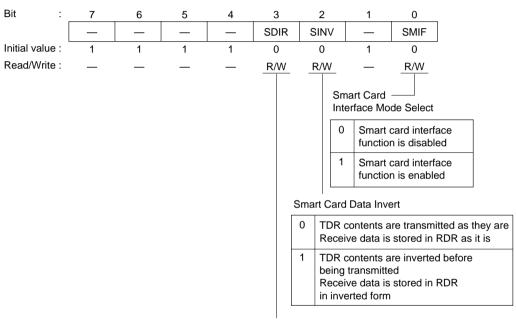
Note: * Can only be written with 0 for flag clearing.

SSR0—Serial Status Register 0

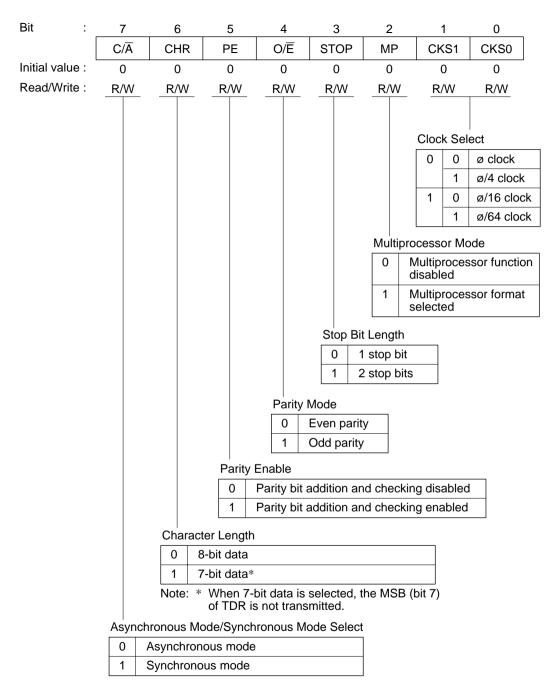

H'FF7C

Note: * Can only be written with 0 for flag clearing.

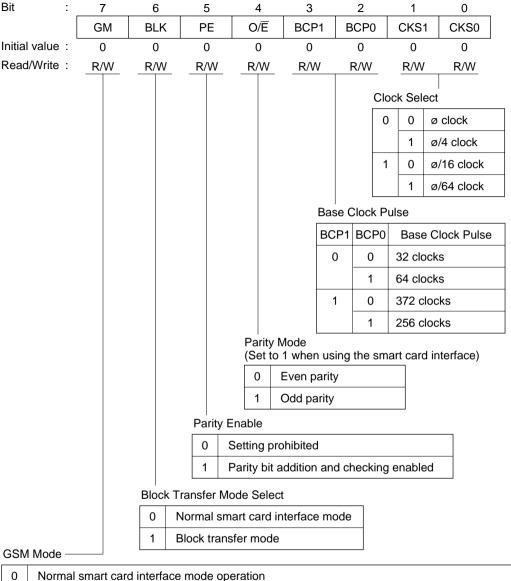
. When data is transferred from TDR to TSR and data can be written to TDR


RDR0—Receive Data Register 0

Stores received serial data


SCMR0—Smart Card Mode Register 0

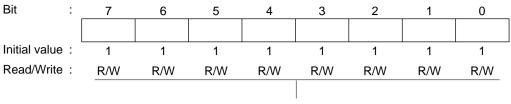
H'FF7E SCI0, Smart Card Interface 0



Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

Smart Card Interface 1

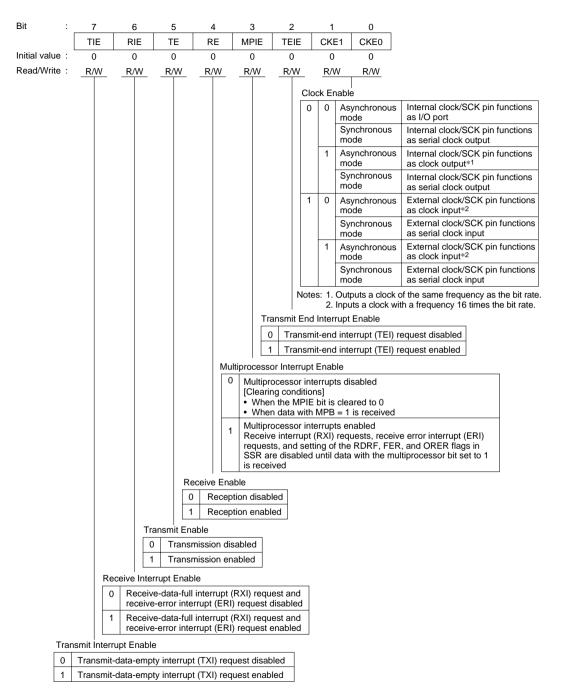

- Normal smart card interface mode operation
 - TEND flag generated 12.5 etu (11.5 etu in block transfer mode) after beginning of start bit
 - Clock output on/off control only
 - GSM mode smart card interface mode operation
 - TEND flag generated 11.0 etu after beginning of start bit
 - Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control

Note: etu (Elementary Time Unit): Interval for transfer of one bit

HITACHI

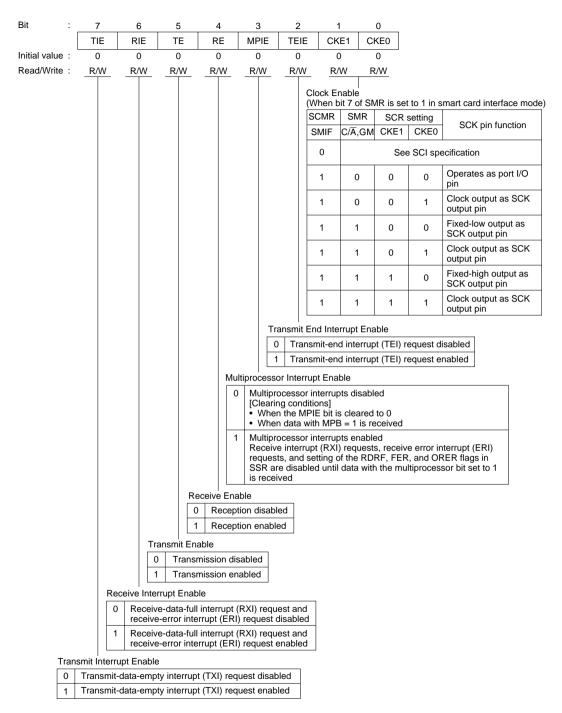
1

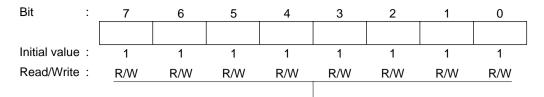
BRR1—Bit Rate Register 1


Sets the serial transfer bit rate

Note: For details, see section 11.2.8, Bit Rate Register (BRR), in the Hardware Manual.

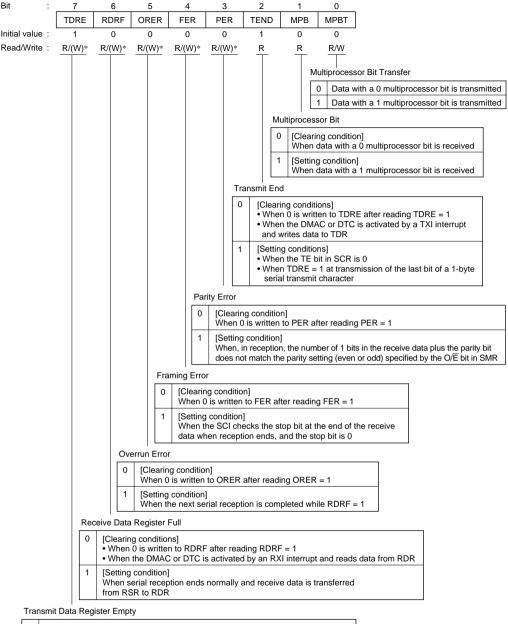
SCR1—Serial Control Register 1

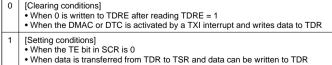

H'FF82


SCI1

SCR1—Serial Control Register 1

H'FF82

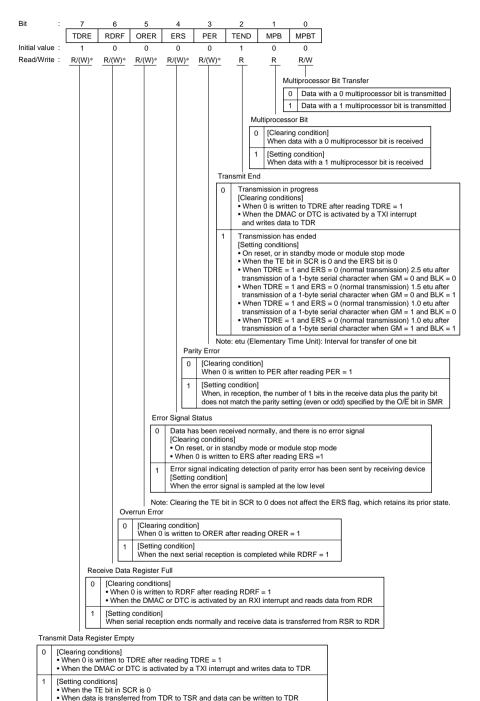




Stores data for serial transmission

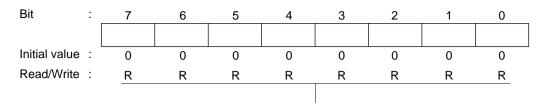
SSR1—Serial Status Register 1

H'FF84



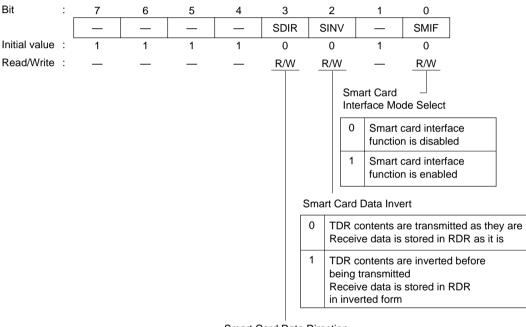
Note: * Can only be written with 0 for flag clearing.

SSR1—Serial Status Register 1

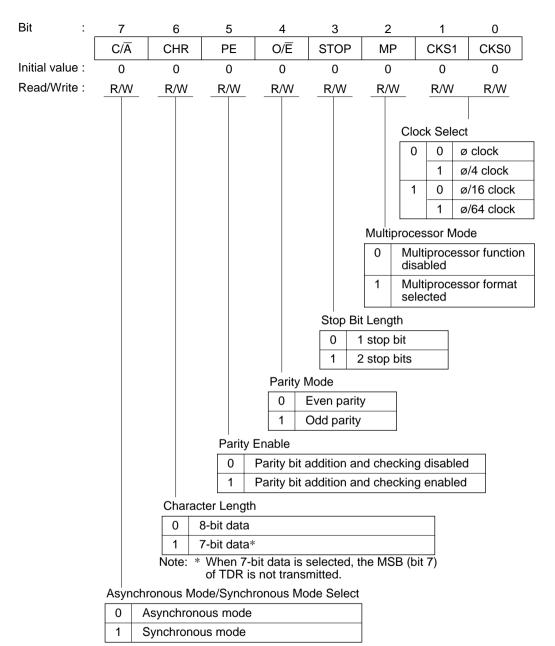

H'FF84

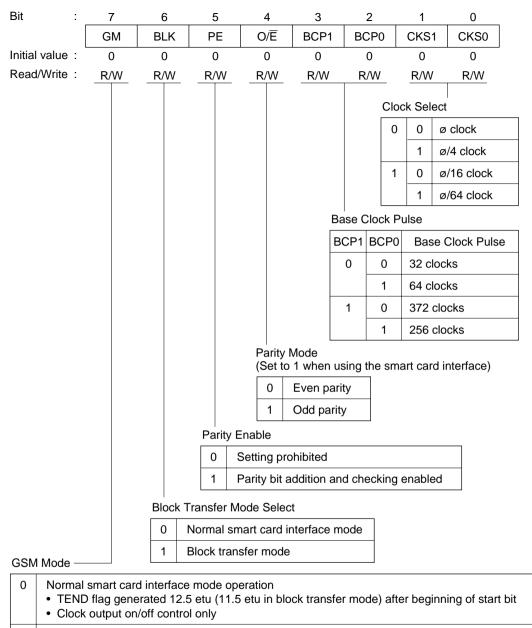
Note: * Can only be written with 0 for flag clearing.

RDR1—Receive Data Register 1


H'FF85 SCI1, Smart Card Interface 1

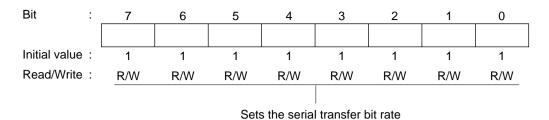
Stores received serial data


SCMR1—Smart Card Mode Register 1


H'FF86 SCI1, Smart Card Interface 1

Smart Card Data Direction

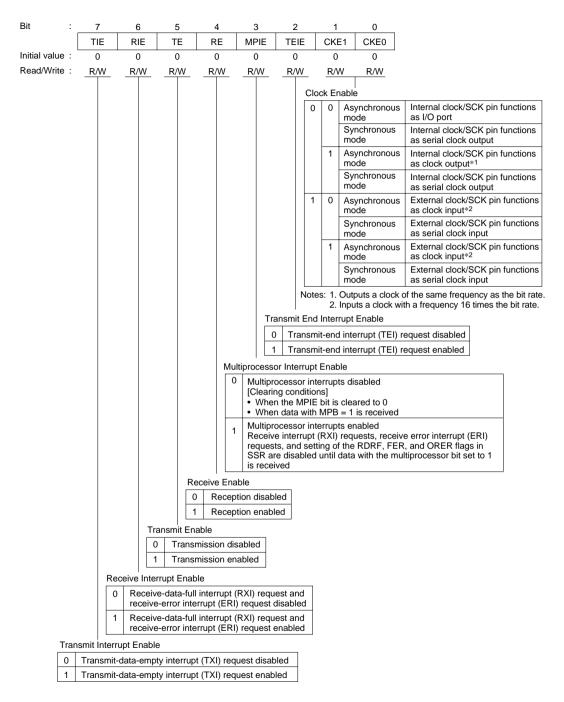
0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first



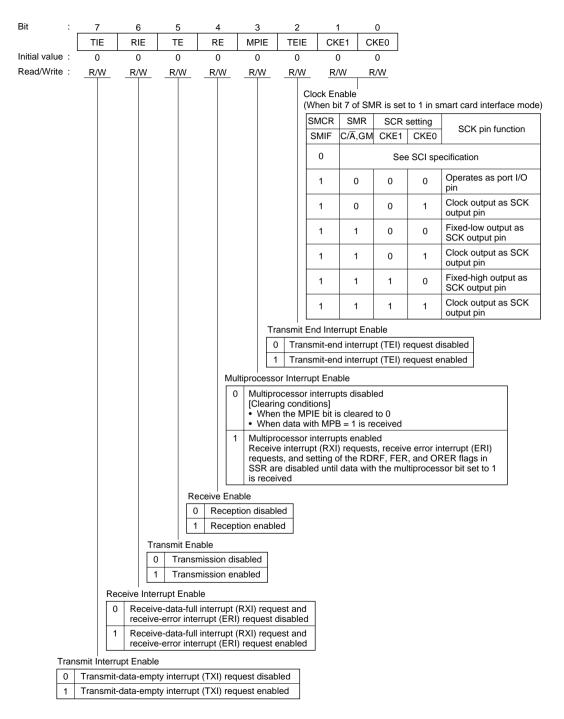
GSM mode smart card interface mode operation

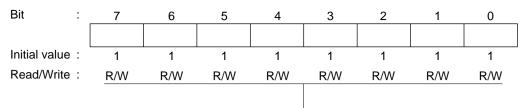
1

- TEND flag generated 11.0 etu after beginning of start bit
- Fixed high/low-level control possible (set in SCR) in addition to clock output on/off control


Note: etu (Elementary Time Unit): Interval for transfer of one bit

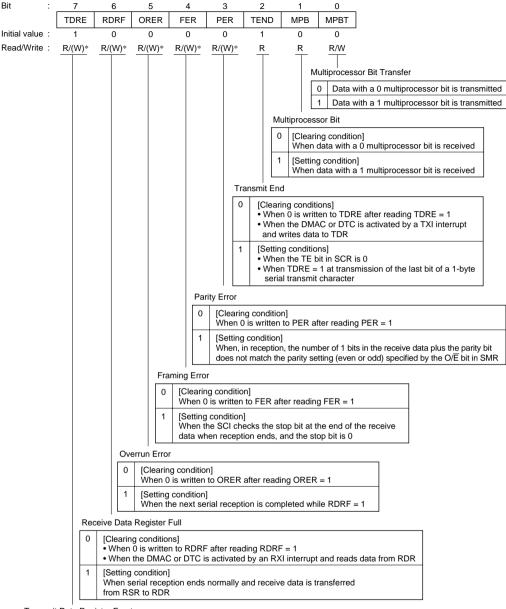
Note: For details, see section 11.2.8, Bit Rate Register (BRR), in the Hardware Manual.


SCR2—Serial Control Register 2


H'FF8A

SCR2—Serial Control Register 2

H'FF8A

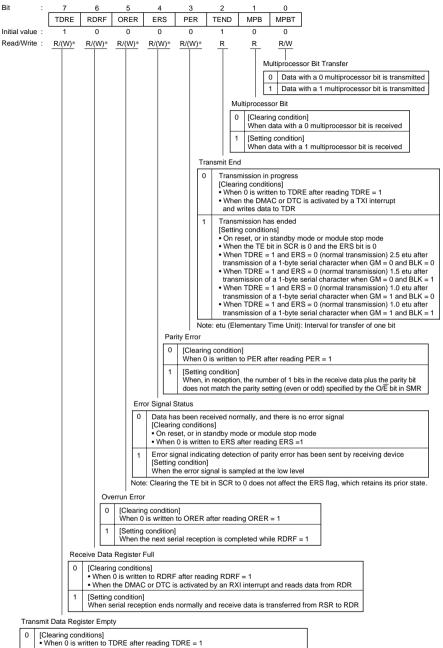


Stores data for serial transmission

SSR2—Serial Status Register 2

H'FF8C

SCI2

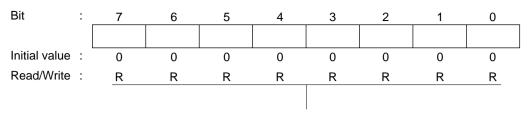

Transmit Data Register Empty

0	[Clearing conditions] • When 0 is written to TDRE after reading TDRE = 1 • When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR
1	[Setting conditions] • When the TE bit in SCR is 0 • When data is transferred from TDR to TSR and data can be written to TDR

Note: * Can only be written with 0 for flag clearing.

SSR2—Serial Status Register 2

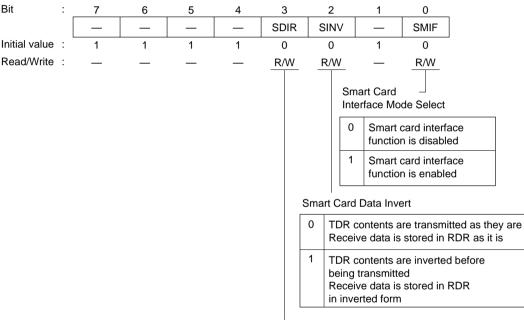
H'FF8C



When the DMAC or DTC is activated by a TXI interrupt and writes data to TDR
 [Setting conditions]
 When the TE bit in SCR is 0

When data is transferred from TDR to TSR and data can be written to TDR

Note: * Can only be written with 0 for flag clearing.


RDR2—Receive Data Register 2

Stores received serial data

SCMR2—Smart Card Mode Register 2

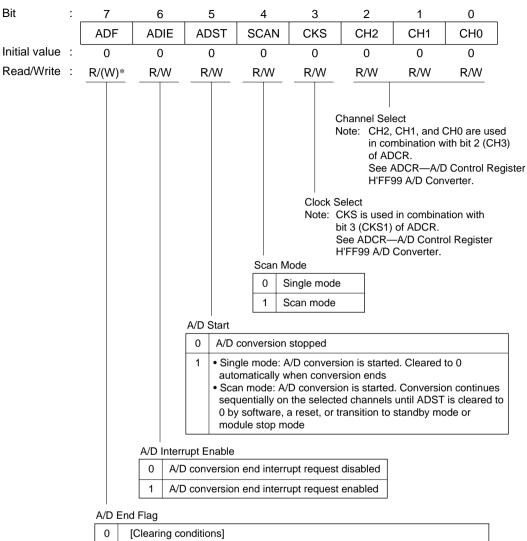
H'FF8E SCI2, Smart Card Interface 2

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

ADDRAH —	A/D Data Register AH	H'FF90	A/D Converter
ADDRAL —	A/D Data Register AL	H'FF91	A/D Converter
ADDRBH —	A/D Data Register BH	H'FF92	A/D Converter
ADDRBL —	A/D Data Register BL	H'FF93	A/D Converter
ADDRCH —	A/D Data Register CH	H'FF94	A/D Converter
ADDRCL —	A/D Data Register CL	H'FF95	A/D Converter
ADDRDH —	A/D Data Register DH	H'FF96	A/D Converter
ADDRDL —	A/D Data Register DL	H'FF97	A/D Converter

B	it	


Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	_	_	_	_	_	—	
Initial value	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Read/Write	:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Stores the results of A/D conversion

	Analog Inp			
Channel Set	0 (CH3 = 1)	Channel Set 1 (CH3 = 0)	A/D Data Register
Group 0	Group 1	Group 0	Group 1	
AN0	AN4	Setting prohibited	AN12	ADDRA
AN1	AN5	Setting prohibited	AN13	ADDRB
AN2	AN6	Setting prohibited	AN14	ADDRC
AN3	AN7	Setting prohibited	AN15	ADDRD

ADCSR—A/D Control/Status Register

H'FF98

0	[Clearing conditions] • When 0 is written to the ADF flag after reading ADF = 1 • When the DMAC or DTC is activated by an ADI interrupt, and ADDR is read
1	[Setting conditions]Single mode: When A/D conversion endsScan mode: When A/D conversion ends on all specified channels

Note: * Can only be written with 0 for flag clearing.

ADCR—A/D Control Register

H'FF99

Bit	:	7	6		5	4	Ļ	3	2	1	0	
		TRGS1	TRG	S0	_	_	- (CKS1	CH3	_	_]
Initial value	:	0	0		1	1		1	1	1	1	7
Read/Write	:	R/W	R/V	V	_	_	-	R/W	R/W	—	—	
					0							
						nel Selec ts the an		out char	nels. Ens	ure that co	nversion	is halted
									channel se			
					C	Channel	Selecti	on		Desc	ription	
					CH3	CH2*	CH1*	CH0*	Single	e Mode	Sca	n Mode
					1	0	0	0	AN0 (Ini	tial value)		AN ₀
								1	A	N ₁	AN	I ₀ , AN ₁
							1	0	A	N ₂	AN	to AN ₂
								1	A	N ₃	AN	to AN ₃
						1	0	0	A	N ₄		AN ₄
								1	A	N ₅	AN	I ₄ , AN ₅
							1	0	A	N ₆	AN∠	to AN ₆
								1	A	N ₇	AN	to AN ₇
					0	0	0	0	Setting p	orohibited	Setting	prohibited
								1	Setting p	orohibited	Setting	prohibited
							1	0	Setting p	orohibited	Setting	prohibited
								1	Setting p	orohibited	Setting	prohibited
						1	0	0	AI	N ₁₂		AN ₁₂
								1	AI	N ₁₃	AN ₁	₂ , AN ₁₃
							1	0	AI	N ₁₄	AN ₁₂	to AN ₁₄
								1	AI	N ₁₅	AN ₁₂	to AN ₁₅
					Note:	* CH2, (CH1, ar	nd CH0	are bits in	ADCSR.		
			Clock Se	1								
			Bit 3	ADC Bit				Des	cription			
			CKS1	CK	_			200	onption			
			0	C		Conversio	on time	= 530 s	tates (ma	x.)		
				1					ates (max.			
			1 0			Conversion time = 266 states (max.) (Initial value)						
			1 Conversion time = 134 states (max.)									
	Tim	or Triaco	r Soloot									
	11(1)	er Trigge	Select									1

TRGS1	TRGS1	Description
0	0	A/D conversion start by external trigger is disabled
	1	A/D conversion start by external trigger (TPU) is enabled
1	0	A/D conversion start by external trigger (8-bit timer) is enabled
	1	A/D conversion start by external trigger pin ($\overline{\text{ADTRG}})$ is enabled

DADR0-D/A Data Register 0 H'FFA4 **D/A Converter** DADR1—D/A Data Register 1 H'FFA5 **D/A Converter** Bit 6 2 : 7 5 4 3 1 0 Initial value : 0 0 0 0 0 0 0 0 Read/Write : R/W R/W R/W R/W R/W R/W R/W R/W

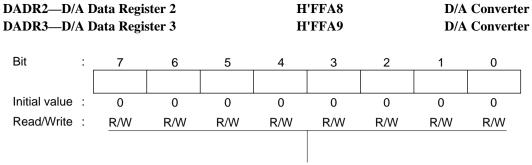
Stores data for D/A conversion

DACR01—D/A Control Register 01

H'FFA6

Bit :	7	6	5	4	3	2	1	0
	DAOE1	DAOE0	DAE	—	—	—	—	_
Initial value :	0	0	0	1	1	1	1	1
Read/Write :	R/W	R/W	R/W	_	_	_		—
		D/A Ou	tput Enabl	le 0				
		0 A	Analog out	tput DA ₀ is	disabled			
				D/A conve tput DA ₀ is		nabled		

D/A Output Enable 1


0	Analog output DA ₁ is disabled
1	Channel 1 D/A conversion is enabled Analog output DA_1 is enabled

D/A Conversion Control

DAOE1	DAOE0	DAE	Description
0	0	*	Channel 0 and 1 D/A conversion disabled
	1	0	Channel 0 D/A conversion enabled
			Channel 1 D/A conversion disabled
		1	Channel 0 and 1 D/A conversion enabled
1	0	0	Channel 0 D/A conversion disabled
			Channel 1 D/A conversion enabled
		1	Channel 0 and 1 D/A conversion enabled
	1	*	Channel 0 and 1 D/A conversion enabled

* : Don't care

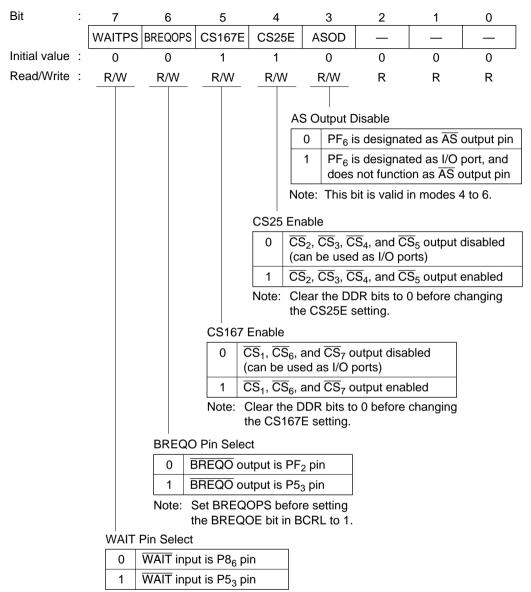
Stores data for D/A conversion

DACR23—D/A Control Register 23

H'FFAA

Bit :	7	6	5	4	3	2	1	0
	DAOE1	DAOE0	DAE	—	—	—	—	_
Initial value :	0	0	0	1	1	1	1	1
Read/Write :	R/W	R/W	R/W	_	_	_		—
		D/A Ou	tput Enabl	le 0				
		0 A	Analog out	tput DA ₂ is	disabled			
				D/A conve tput DA ₂ is		nabled		

D/A Output Enable 1


0	Analog output DA ₃ is disabled
1	Channel 3 D/A conversion is enabled Analog output DA_3 is enabled

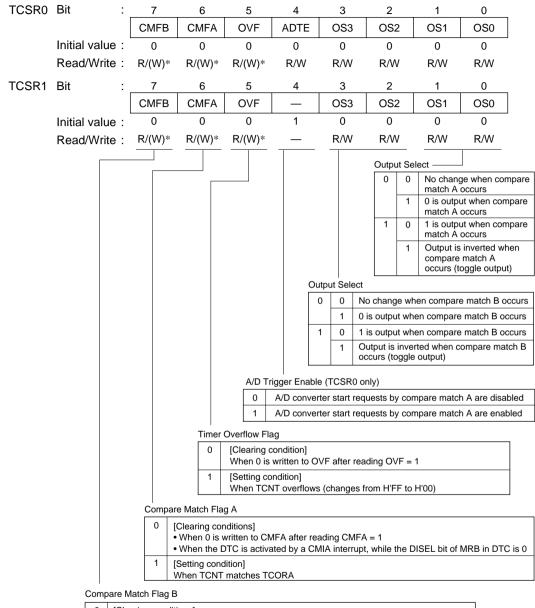
_

D/A Conversion Control

DAOE1	DAOE0	DAE	Description
0	0	*	Channel 2 and 3 D/A conversion disabled
	1	0	Channel 2 D/A conversion enabled
			Channel 3 D/A conversion disabled
		1	Channel 2 and 3 D/A conversion enabled
1	0	0	Channel 2 D/A conversion disabled
			Channel 3 D/A conversion enabled
		1	Channel 2 and 3 D/A conversion enabled
	1	*	Channel 2 and 3 D/A conversion enabled

* : Don't care

Note: Set WAITPS before setting the WAITE bit in BCRL to 1.

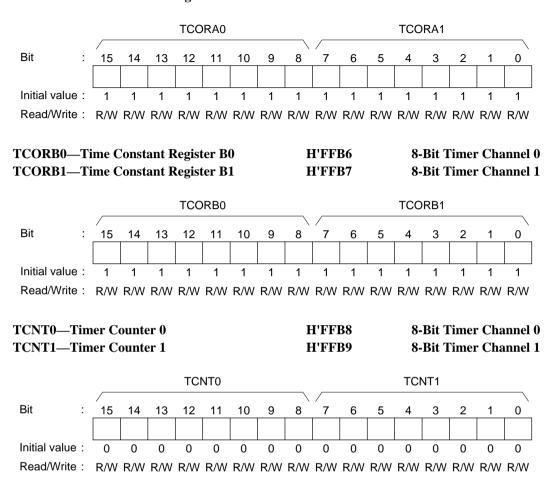

TCR0—Time Control Register 0 TCR1—Time Control Register 1

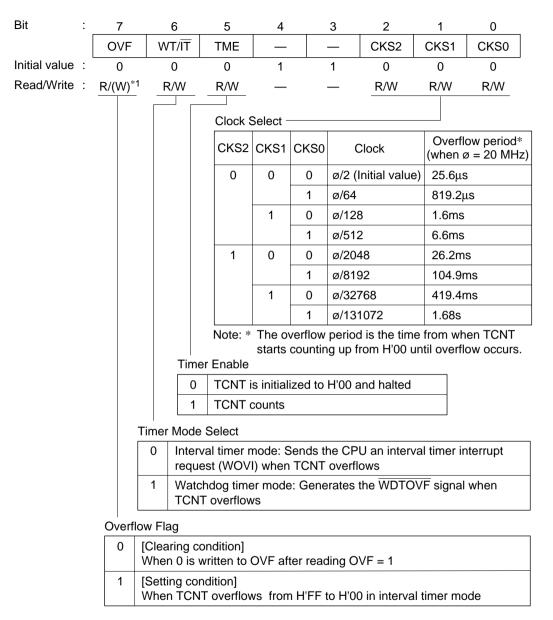
H'FFB0 H'FFB1 8-Bit Timer Channel 0 8-Bit Timer Channel 1

Bit :	7	6	5	4		3	2		1	0	
	CMIEB	CMIEA	OVIE	CCLR	1 C	CLR0	CKS	2	CKS1	CKS0	
Initial value :	0	0	0	0		0	0		0	0	
Read/Write :	R/W	R/W	R/W	R/W	ł	R/W	R/W		R/W	R/W	
							Clo	ck Se	elect		
							0	0	0	Clock inpu	ut disabled
									1	Internal clo of ø/8	ock: counted at falling edge
								1	0	Internal clo of ø/64	ock: counted at falling edge
									1	Internal clo of ø/8192	ock: counted at falling edge
							1	0	0	For chann	ICNT1 overflow signal*
									1	External c	lock: counted at rising edge
								1	0	External c	lock: counted at falling edge
									1	External c	lock: counted at both rising and ges
						I	Note: *	sigr mat	nal and ch sigr	that of char	annel 0 is the TCNT1 overflow nnel 1 is the TCNT0 compare menting clock is generated.
				Coun	ter Cle	ear					
				0	0	Clea	r is dis	ablec	ł		
					1	Clea	r by co	mpai	re mato	ch A	
				1	0		r by co	•			
					1	Clea	r by ris	ing e	dge of	external res	set input
			Timer O	/erflow	Interru	upt Ena	ble				
				OVF inte	errupt	reques	ts (OVI) are	disabl	ed	
			1 0	OVF inte	errupt	reques	ts (OVI) are	enable	ed	
		Compare	e Match In	terrupt	Enable	e A					
		0 0	CMFA inte	rrupt re	quests	s (CMIA	A) are d	lisabl	led		
		1 0	CMFA inte	rrupt re	quests	s (CMIA	A) are e	enabl	ed		
	Compare	Match Int	errupt Ena	able B							

0	CMFB interrupt requests (CMIB) are disabled
1	CMFB interrupt requests (CMIB) are enabled

TCSR0—Timer Control/Status Register 0 TCSR1—Timer Control/Status Register 1 8-Bit Timer Channel 0 8-Bit Timer Channel 1

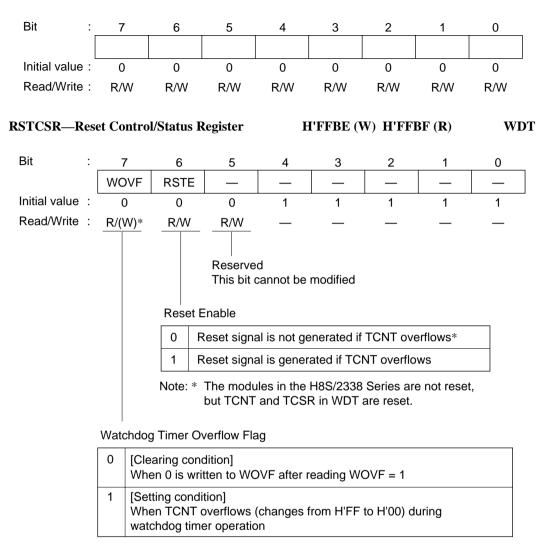



0	[Clearing conditions]
	 When 0 is written to CMFB after reading CMFB = 1
	• When the DTC is activated by a CMIB interrupt, while the DISEL bit of MRB in DTC is 0
1	[Setting condition]
	When TCNT matches TCORB

Note: * Only 0 can be written to bits 7 to 5, to clear these flags.

TCORA0—Time Constant Register A0 TCORA1—Time Constant Register A1

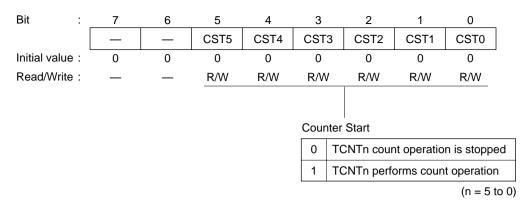
H'FFB4 H'FFB5 8-Bit Timer Channel 0 8-Bit Timer Channel 1



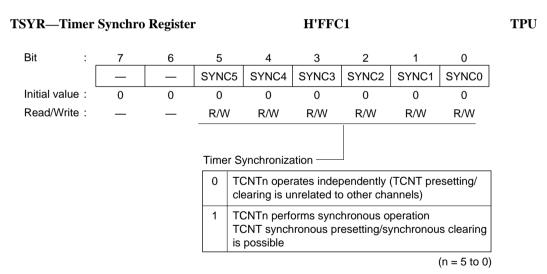
The method for writing to TCSR is different from that for general registers to prevent accidental overwriting. For details, see section 10.2.4, Notes on Register Access, in the Hardware Manual.

Note: * Can only be written with 0 for flag clearing.

TCNT—Timer Counter

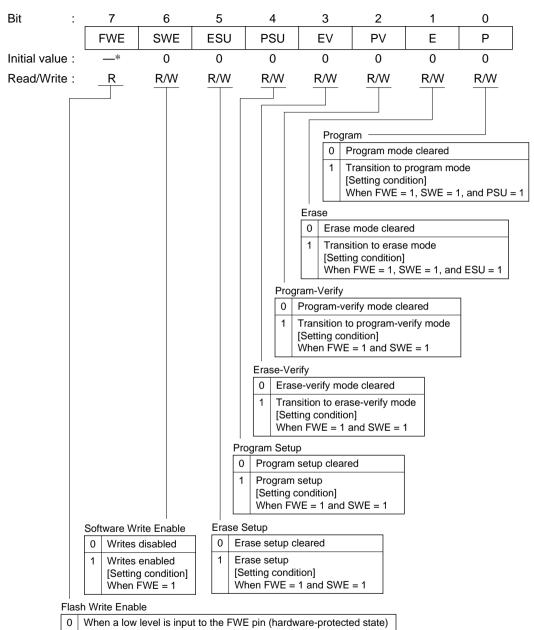

Note: * Can only be written with 0 for flag clearing.

The method for writing to RSTCSR is different from that for general registers to prevent accidental overwriting. For details, see section 10.2.4, Notes on Register Access, in the Hardware Manual.


TSTR—Timer Start Register

492

H'FFC0



Note: If 0 is written to the CST bit during operation with the TIOC pin designated for output, the counter stops but the TIOC pin output compare output level is retained. If TIOR is written to when the CST bit is cleared to 0, the pin output level will be changed to the set initial output value.

- Notes: 1. To set synchronous operation, the SYNC bits for at least two channels must be set to 1.
 - 2. To set synchronous clearing, in addition to the SYNC bit , the TCNT clearing source must also be set by means of bits CCLR2 to CCLR0 in TCR.

H'FFC8

- 1 When a high level is input to the FWE pin
- Note: * Determined by the state of the FWE pin (H8S/2338 F-ZTAT version). The FWE pin is fixed to 1 in the H8S/2339 F-ZTAT version.

H'FFC9

Bit :	7	6	5	4	3	2	1	0
	FLER	—	_	—	—	_	_	—
Initial value:	0	0	0	0	0	0	0	0
Read/Write :		_	_	_	_	_	_	_
	Flash N	lemory Er	ror					
 Flash memory is operating normally Flash memory program/erase protection (error protection) is [Clearing condition] Reset or hardware standby mode An error has occurred during flash memory programming/era Flash memory program/erase protection (error protection) is [Setting condition] See section 17.8.3, Error Protection, in the Hardware Manua 								sabled
								•

EBR1—Erase Block Register 1

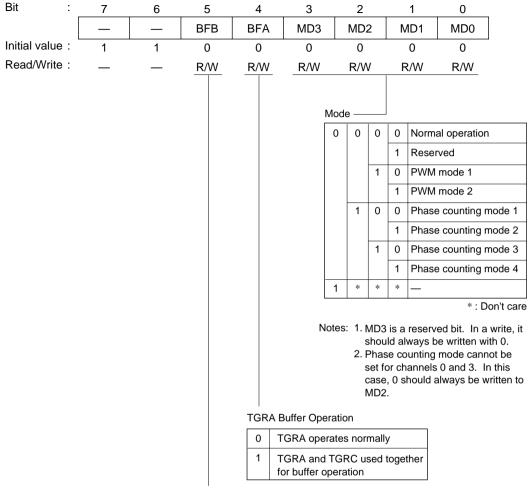
H'FFCA H'FFCB

Flash Memory Flash Memory (Valid only in F-ZTAT version)

Bit :	7	6	5	4	3	2	1	0
EBR1	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit :	7	6	5	4	3	2	1	0
EBR2	—	—	EB13*	EB12*	EB11	EB10	EB9	EB8
Initial value :	0	0	0	0	0	0	0	0
Read/Write :	_	_	_	_	R/W	R/W	R/W	R/W

Note: * Valid only in H8S/2339 F-ZTAT version.

TCR0—Timer Control Register 0


H'FFD0

TPU0

Bit :	7		6	5	4	3			2	1	0	_
	CCLR2	c	CLR1	CCLR0	CKEG1	CKE	G0	Т	PSC	2 TPSC1	TPSC0	
Initial value :	0		0	0	0	0	0		0	0	0	-
Read/Write :	R/W	F	R/W	R/W	R/W	R/\	N	ļ	R/W	R/W	R/W	
							Time	Pre	scal	er		
							0	0	0	Internal clock:	counts on	ø/1
									1	Internal clock:	counts on	ø/4
								1	0	Internal clock:	counts on	ø/16
									1	Internal clock:	counts on	ø/64
							1	0	0	External clock	counts or	n TCLKA pin input
									1	External clock	: counts or	n TCLKB pin input
								1	0	External clock	: counts or	n TCLKC pin input
									1	External clock	: counts or	n TCLKD pin input
					Clock E						7	
					0 0					edge	-	
					1					edge	-	
	C	`ount	 er Cl	or	1 –	- Co	bunt	at bo	oth e	dges		
	Г				aring disabl	ed					7	
		Ŭ					nnar	e m	atch/	input capture	-	
		-	1 (input capture	-	
			' F		ared by cour						-	
					•					ous operation*1		
	_	1	0 () TCNT cle	aring disabl	ed					1	
			·	TCNT cle	ared by TG	RC con	npar	e ma	atch/	input capture*2	2	
			1 () TCNT cle	ared by TG	RD con	npar	e ma	atch/	input capture*2	2	
			ŀ	TCNT cle	ared by cour	nter clea	aring	for a	anoth	ner channel		
	L			performin	g synchrono	us clea	ring/s	sync	hron	ous operation*1		
	Ν	lotes	: 1.	Synchronou	s operation	setting	is pe	erfor	med	by setting the		
				SYNC bit in		haeus	25.2	huf	for re	egister, TCNT i	c	
				not cleared I	pecause the	buffer	regi	ster	setti	ng has priority,		
				and compare	e match/inpu	ut captu	ure c	loes	not	occur.		

TMDR0—Timer Mode Register 0

H'FFD1

TGRB Buffer Operation

0	TGRB operates normally
1	TGRB and TGRD used together for buffer operation

TIOR0H—Timer I/O Control Register 0H

TGR0B

is input

capture

register

1

1 *

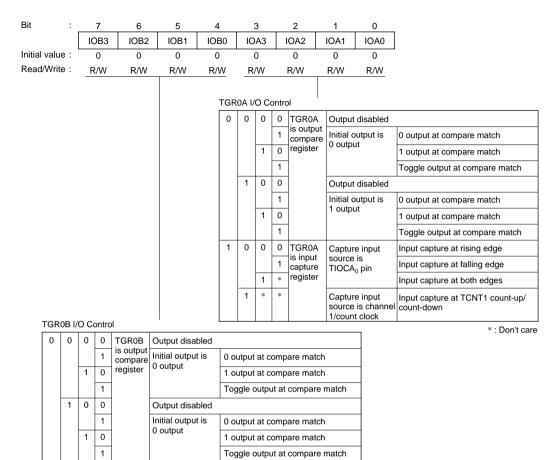
* *

1

Capture input

Capture input

1/count clock


source is channel

source is

TIOCB₀ pin

1 0 0 0

H'FFD2

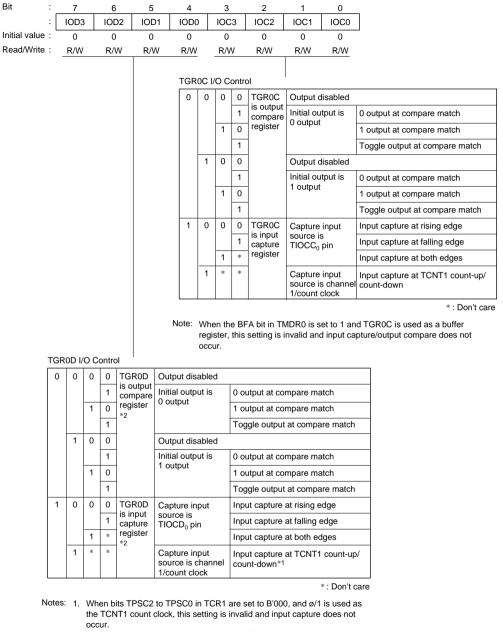
* : Don't care

Note: 1. When bits TPSC2 to TPSC0 in TCR1 are set to B'000, and ø/1 is used as the TCNT1 count clock, this setting is invalid and input capture does not occur.

Input capture at TCNT1 count-up/

Input capture at rising edge

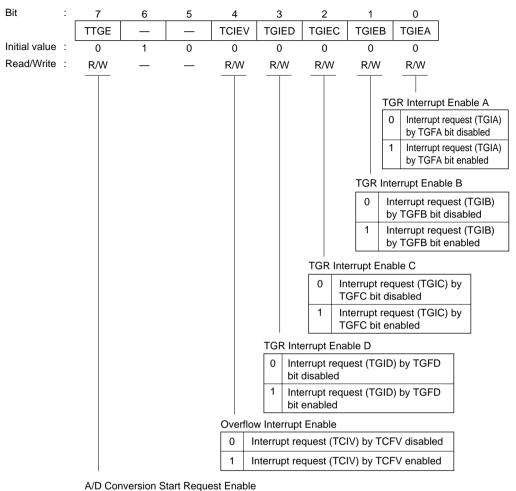
Input capture at falling edge


Input capture at both edges

count-down*1

TIOR0L—Timer I/O Control Register 0L

H'FFD3

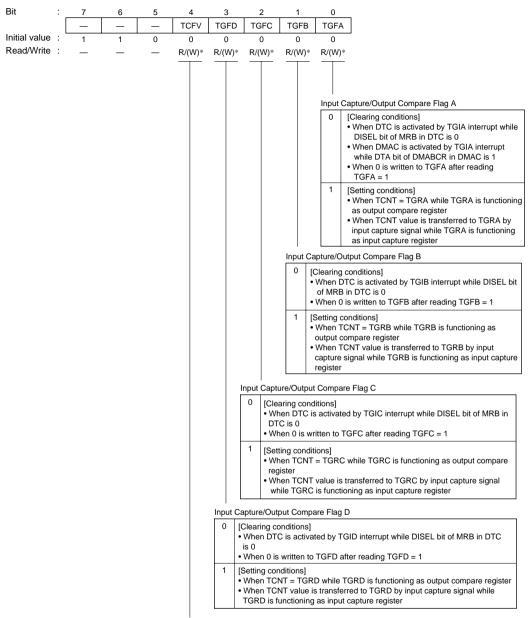

 When the BFB bit in TMDR0 is set to 1 and TGR0D is used as a buffer register, this setting is invalid and input capture/output compare does not occur.

Note: When TGRC or TGRD is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

TIER0—Timer Interrupt Enable Register 0

H'FFD4

TPU0

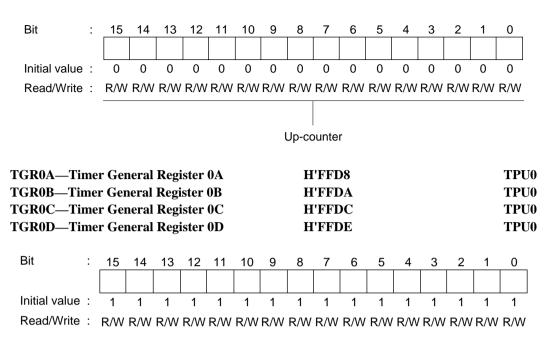


0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR0—Timer Status Register 0

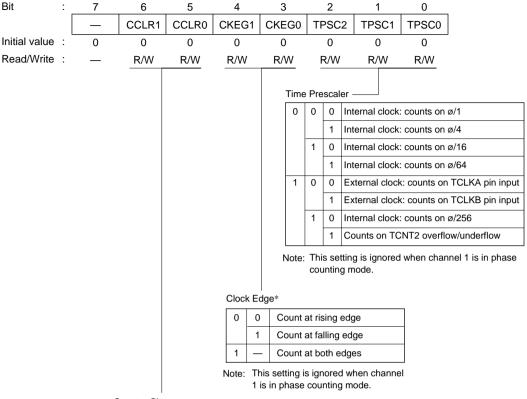
H'FFD5

TPU0



Overflow Flag

0	[Clearing condition] When 0 is written to TCFV after reading TCFV = 1
1	[Setting condition] When the TCNT value overflows (changes from H'FFFF to H'0000)

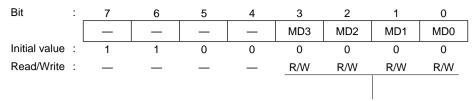

TCNT0—Timer Counter 0

H'FFD6

TCR1—Timer Control Register 1

H'FFE0

Counter Clear


0	0	TCNT clearing disabled
	1	TCNT cleared by TGRA compare match/input capture
1	0	TCNT cleared by TGRB compare match/input capture
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR1—Timer Mode Register 1

H'FFE1

TPU1

Mode	Э			
0	0	0	0	Normal operation
			1	Reserved
		1	0	PWM mode 1
			1	PWM mode 2
	1	0	0	Phase counting mode 1
			1	Phase counting mode 2
		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	*	*	*	—

* : Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

TIOR1—Timer I/O Control Register 1

Bit

Initial value :

Read/Write :

:

7

IOB3

0

R/W

H'FFE2

6 5 4 3 2 1 0 IOB2 IOB1 IOB0 IOA3 IOA2 IOA1 IOA0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W TGR1A I/O Control 0 TGR1A 0 0 0 Output disabled is output Initial output is 1 0 output at compare match compare 0 output register 1 0 1 output at compare match 1 Toggle output at compare match 1 0 0 Output disabled 1 Initial output is 0 output at compare match 1 output

Capture input

Capture input

input capture

source is TGR0A

compare match/

source is

TIOCA₁ pin

TGR1B I/O Control

* : Don't care

1 output at compare match

Input capture at rising edge

Input capture at falling edge

Input capture at both edges

input capture

Input capture at generation of

channel 0/TGR0A compare match/

Toggle output at compare match

TPU1

0	0	0	0	TGR1B is output compare register	Output disabled	
			1		Initial output is 0 output	0 output at compare match
			0			1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is 1 output	0 output at compare match
		1	0			1 output at compare match
			1			Toggle output at compare match
1	0	0	0	TGR1B is input capture register	Capture input source is TIOCB ₁ pin	Input capture at rising edge
			1			Input capture at falling edge
			*			Input capture at both edges
	1	*	*		Capture input source is TGR0C compare match/ input capture	Input capture at generation of TGR0C compare match/input capture

1 0

1 *

1

0 0 0

1 * *

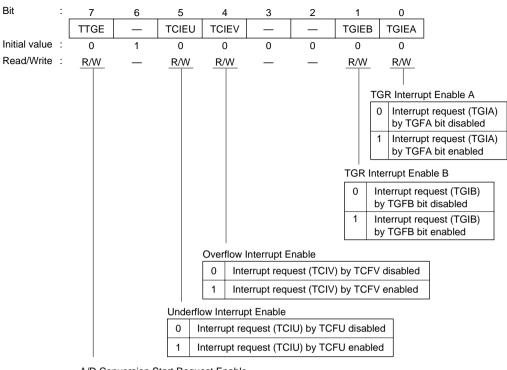
1

1

TGR1A

is input

capture

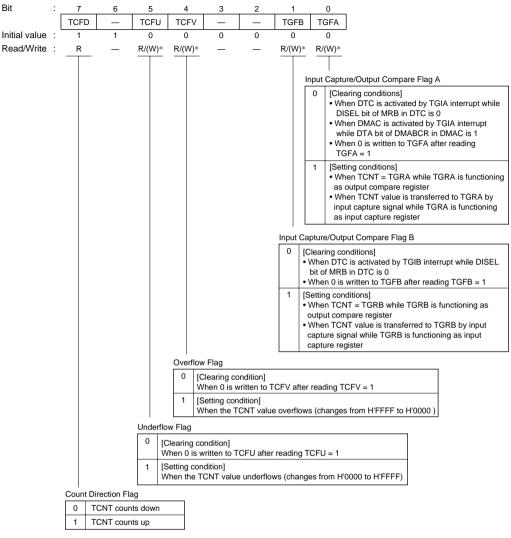

register

* : Don't care

TIER1—Timer Interrupt Enable Register 1

H'FFE4

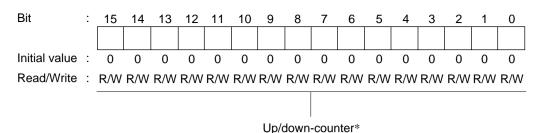
TPU1

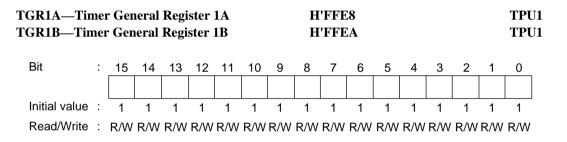

A/D Conversion Start Request Enable

0	A/D conversion start request generation disabled
1	A/D conversion start request generation enabled

TSR1—Timer Status Register 1

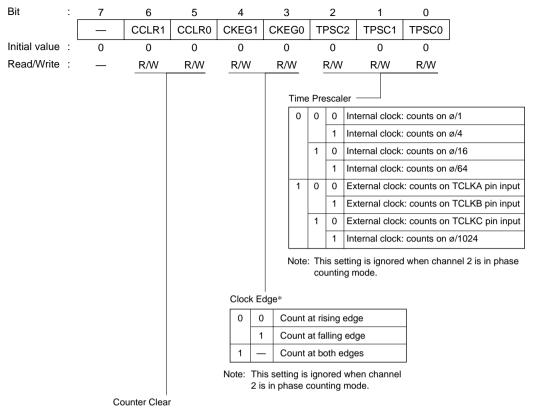
H'FFE5




Note: * Can only be written with 0 for flag clearing.

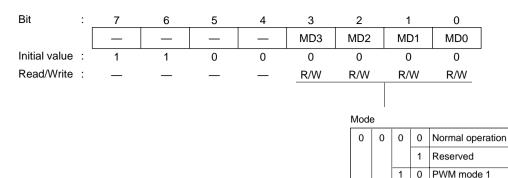
TCNT1—Timer Counter 1

H'FFE6


Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

TCR2—Timer Control Register 2

H'FFF0


0	0	TCNT clearing disabled		
	1	TCNT cleared by TGRA compare match/input capture		
1	0	TCNT cleared by TGRB compare match/input capture		
	1	TCNT cleared by counter clearing for another channel performing synchronous clearing/synchronous operation*		

Note: * Synchronous operation setting is performed by setting the SYNC bit in TSYR to 1.

TMDR2—Timer Mode Register 2

H'FFF1

TPU2

* : Don't care

Note: MD3 is a reserved bit. In a write, it should always be written with 0.

PWM mode 2

Phase counting mode 1

Phase counting mode 2

Phase counting mode 3

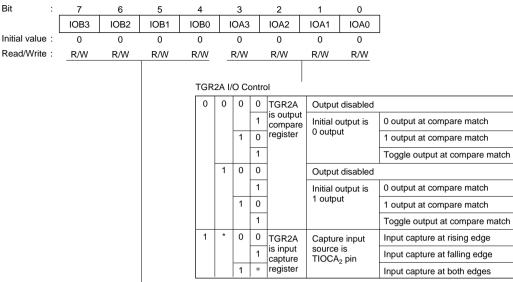
Phase counting mode 4

1

1

0

1


1 0 0

1 * * *

TIOR2—Timer I/O Control Register 2

H'FFF2

TPU2

* : Don't care

TGR2B I/O Control

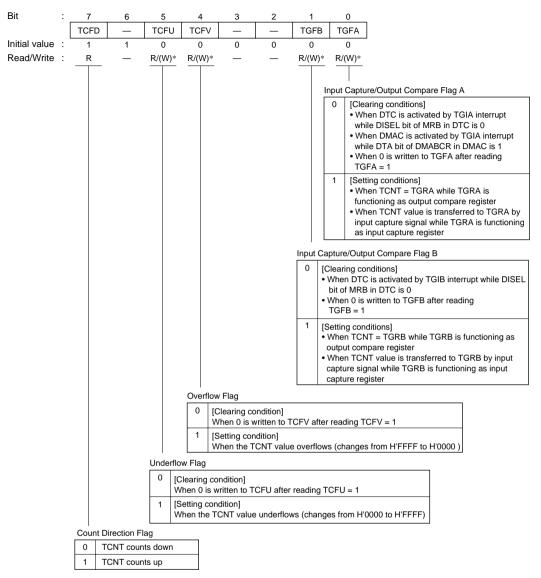
0	0	0	0	TGR2B is output compare register	Output disabled	
			1		Initial output is 0 output	0 output at compare match
			0			1 output at compare match
			1			Toggle output at compare match
	1	0	0		Output disabled	
			1		Initial output is	0 output at compare match
		1	0		1 output	1 output at compare match
			1			Toggle output at compare match
1	*	0	0	is input capture	Capture input source is TIOCB ₂ pin	Input capture at rising edge
			1			Input capture at falling edge
		1	*			Input capture at both edges

* : Don't care

TIER2—Timer Interrupt Enable Register 2

1

Bit 7 6 5 4 3 2 1 0 TTGE TCIEU TCIEV TGIEB TGIEA Initial value : 0 1 0 0 0 0 0 0 Read/Write : R/W R/W R/W R/W R/W TGR Interrupt Enable A Interrupt request (TGIA) 0 by TGFA bit disabled Interrupt request (TGIA) 1 by TGFA bit enabled TGR Interrupt Enable B 0 Interrupt request (TGIB) by TGFB bit disabled 1 Interrupt request (TGIB) by TGFB bit enabled **Overflow Interrupt Enable** Interrupt request (TCIV) by TCFV disabled 0 1 Interrupt request (TCIV) by TCFV enabled Underflow Interrupt Enable 0 Interrupt request (TCIU) by TCFU disabled 1 Interrupt request (TCIU) by TCFU enabled A/D Conversion Start Request Enable 0 A/D conversion start request generation disabled

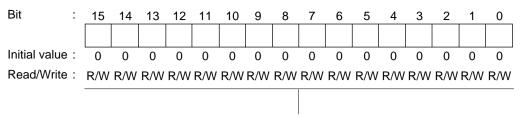

A/D conversion start request generation enabled

HITACHI

TPU2

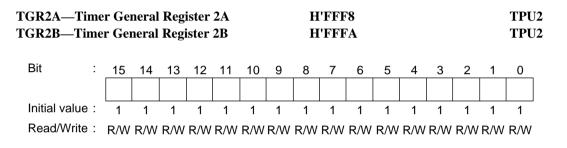
TSR2—Timer Status Register 2

H'FFF5



Note: * Can only be written with 0 for flag clearing.

TCNT2—Timer Counter 2


H'FFF6

TPU2

Up/down-counter*

Note: * This timer counter can be used as an up/down-counter only in phase counting mode or when performing overflow/underflow counting on another channel. In other cases it functions as an up-counter.

H8S/2339, H8S/2338 Series, H8S/2339 F-ZTATTM, H8S/2338 F-ZTATTM Reference Manual

Publication Date:	1st Edition, March 1999		
	2nd Edition, May 2000		
Published by:	Electronic Devices Sales & Marketing Group		
	Semiconductor & Integrated Circuits		
	Hitachi, Ltd.		
Edited by:	Technical Documentation Group		
	Hitachi Kodaira Semiconductor Co., Ltd.		
Copyright © Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.			